


Bioinformatics —
From Genomes to Therapies

Edited by
Thomas Lengauer



Bioinformatics -
From Genomes to Therapies

Volume 1

The Building Blocks:
Molecular Sequences and Structures

Edited by
Thomas Lengauer

1807
:| @)WILEY [3
;2007;

NNNNNNNNNNNN

WILEY-VCH Verlag GmbH & Co. KGaA



Bioinformatics -
From Genomes to Therapies

Volume 2

Getting at the Inner Workings:
Molecular Interactions

Edited by
Thomas Lengauer

1807
:| @)WILEY [3
;2007;

NNNNNNNNNNNN

WILEY-VCH Verlag GmbH & Co. KGaA



Bioinformatics -
From Genomes to Therapies

Volume 3

The Holy Grail:
Molecular Function

Edited by
Thomas Lengauer

1807
:| @)WILEY [3
;2007;

NNNNNNNNNNNN

WILEY-VCH Verlag GmbH & Co. KGaA




1807-2007 Knowledge for Generations

Each generation has its unique needs and aspirations. When Charles Wiley first
opened his small printing shop in lower Manhattan in 1807, it was a generation
of boundless potential searching for an identity. And we were there, helping to
define a new American literary tradition. Over half a century later, in the midst
of the Second Industrial Revolution, it was a generation focused on building
the future. Once again, we were there, supplying the critical scientific, technical,
and engineering knowledge that helped frame the world. Throughout the 20th
Century, and into the new millennium, nations began to reach out beyond their
own borders and a new international community was born. Wiley was there, ex-
panding its operations around the world to enable a global exchange of ideas,
opinions, and know-how.

For 200 years, Wiley has been an integral part of each generation's journey,
enabling the flow of information and understanding necessary to meet their
needs and fulfill their aspirations. Today, bold new technologies are changing
the way we live and learn. Wiley will be there, providing you the must-have
knowledge you need to imagine new worlds, new possibilities, and new oppor-
tunities.

Generations come and go, but you can always count on Wiley to provide you
the knowledge you need, when and where you need it!

William J. Pesce Peter Booth Wiley
President and Chief Executive Officer Chairman of the Board



The Editor

Prof. Dr. Thomas Lengauer
Max-Planck-Institute

for Informatics
Stuhlsatzenhausweg 85
66123 Saarbriicken
Germany

All books published by Wiley-VCH are carefully
produced. Nevertheless, editors, authors and
publisher do not warrant the information contained in
these books to be free of errors. Readers are
advised to keep in mind that statements, data,
illustrations, procedural details or other items may
inadvertently be inaccurate.

Library of Congress Card No.:
applied for

British Library Cataloguing-in-Publication Data:
A catalogue record for this book is available from
the British Library.

Bibliographic information published by

the Deutsche Nationalibliothek

The Deutsche Nationalbibliothek lists this publication
in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at
http://dnb.d-nb.de

© 2007 WILEY-VCH Verlag GmbH & Co KGaA,
Weinheim

All rights reserved (including those of translation into
other languages). No part of this book may be
reproduced in any form — by photocopying,
microfilm, or any other means — nor transmitted or
translated into a machine language without written
permission from the publishers. Registered names,
trademarks, etc. used in this book, even when not
specifically marked as such, are not to be
considered unprotected by law.

Printed in the Federal Republic of Germany
Printed on acid-free paper

Cover Design: Schulz Grafik-Design, Fussgénheim

Composition: Steingraeber Satztechnik GmbH,
Ladenburg

Printing: betz-Druck GmbH, Darmstadt

Bookbinding: Litges & Dopf Buchbinderei GmbH,
Heppenheim

ISBN: 978-3-527-31278-8



For Sybille, Sara and Nico



Vi

Contents

Volume 1
Preface XXV
List of Contributors XXIX

Part 1 Introduction 1

—t

Bioinformatics - From Genomes to Therapies 1
Thomas Lengauer

Introduction 1

The Molecular Basis of Disease 1

The Molecular Approach to Curing Diseases 6
Finding Protein Targets 8

Genomics versus Proteomics 10

Extent of Information Available on the Genes/Proteins 11
Developing Drugs 12

Optimizing Therapies 14

Organization of the Book 15

References 23

NG e W N R
[CREN

Part2 Sequencing Genomes 25

2 Bioinformatics Support for Genome-Sequencing Projects 25
Knut Reinert and Daniel Huson

1 Introduction 25

2 Assembly Strategies for Large Genomes 25

2.1 Introduction 25

22 Properties of the Data 29

221 Reads, Mate-pairs and Quality Values 29
222 Physical Maps 30

Bioinformatics - From Genomes to Therapies Vol. 1. Edited by Thomas Lengauer
Copyright (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-31278-8



VIl | Contents

23 Assembly strategies 31

3 Algorithmic Problems and their Treatment 33
3.1 Overlap Comparison of all Reads 34

3.2 Contig Phase: Layout of Reads 37

3.3 Error Correction and Resolving Repeats 40
3.4 Layout of Contigs 42

3.5 Computation of the Consensus Sequences 45
4 Examples of Existing Assemblers 47

41 The Celera Assembler 47

42 The GigAssembler 48
4.3 The ARACHNE Assembler 48
44 The JAZZ Assembler 49
4.5 The RePS Sssembler 49
4.6 The Barnacle Assembler 49
4.7 The PCAP Assembler 50
4.8 The Phusion Assembler 50
4.9 The Atlas Assembler 51
4.10 Other Assemblers 52
5 Conclusion 52

References 53

Part3 Sequence Analysis 57

3 Sequence Alignment and Sequence Database Search 57
Martin Vingron

1 Introduction 57
2 Pairwise Sequence Comparison 58
2.1 Dot plots 58
2.2 Sequence Alignment 60
3 Database Searching I: Single-sequence Heuristic Algorithms 65
4 Alignment and Search Statistics 68
5 Multiple Sequence Alignment 71
6 Multiple Alignments, HMMs and Database Searching II 74
7 Protein Families and Protein Domains 78
8 Conclusions 79
References 79
4 Phylogeny Reconstruction 83
Ingo Ebersberger, Arndt von Haeseler and Heiko A. Schmidt
1 Introduction 83
1.1 Reconstructing a Tree from its Leaves 84

1.2 Phylogenetic Relationships of Taxa and their Characters 85



1.2.1
1.2.2

2.1
2.2
2.3

3.1
3.1.1
3.1.2
3.2
3.2.1
322
3.2.3
324
3.3
34
3.5
3.6
3.6.1
3.6.2

4.1
4.2
421
422
423

5.1
5.2

5.2.1
522
5.2.3
524

6.1
6.1.1
6.1.2
6.1.3
6.2

The Problem of Character Inconsistencies 86
Finding the Appropriate Character Set 87
Modeling DNA Sequence Evolution 88
Nucleotide Substitution Models 90
Modeling Rate Heterogeneity 90

Codon Models 91

Tracing the Evolutionary Signal 92

The Parsimony Principle of Evolution 93
Generalized Parsimony 94
Multiple/Parallel Hits 95

Distance-based Methods 95

UPGMA 95

Neighbors-relation Methods 96
Neighbor-joining Method 97
Least-squares Methods 98

The Criterion of Likelihood 98
Calculating the Likelihood of a Tree 99
Bayesian Statistics in Phylogenetic Analysis
Rooting Trees/Molecular Clock 101
Outgroup Rooting 101

Midpoint Rooting and Molecular Clock 102
Finding the Optimal Tree 103

Exhaustive Search Methods 103

Heuristic Search Methods 104

Hill Climbing and the Problem of Local Optimization

Modeling Tree Quality 108

Heuristics for Large Datasets 108

The Advent of Phylogenomics 109
Multilocus Datasets 109

Combining Incomplete Multilocus Datasets:
Supertrees and their Methods 112
Agreement Supertrees 112

Optimization Supertrees 114

Contents | IX

The Supertrees/Consensus versus Total Evidence Debate 115

Medium-level Combination 115
Phylogenetic Network Methods 116

From Trees to Split Networks 116

Split Systems and their Visualization 116
Constructing Split Systems from Trees 118

Constructing Split Systems from Sequence Data
Reconstructing Reticulate Evolution and Further Analyses

References 121

119



X | Contents

5 Finding Protein-coding Genes 129
David C. Kulp

1 Introduction 129

2 Basic DNA Terminology 129

3 Detecting Coding Sequences 131

3.1 Reading Frames 132

32 Coding Potential 132

4 Gene Contents 135

5 Gene Signals 137

5.1 Splice Sites 137

52 Translation Initiation 140

53 Translation and Transcription Termination 140

6 Integrating Gene Features 141

6.1 Combining Local Features 141

6.2 Dynamic Programming 142

6.3 Gene Grammars 143

7 Performance Comparisons 145

8 Using Homology 147

8.1 cDNA Clustering and Alignments 147

8.2 Orthologous DNA 150

8.3 Protein Homology 152

8.4 Integrative Methods 153

9 Pitfalls: Pseudogenes, Splice Variants and the Cruel Biological
Reality 153

10 Further Reading 154

References 155

6 Analyzing Regulatory Regions in Genomes 159
Thomas Werner

1 General Features of Regulatory Regions in Eukaryotic
Genomes 159

1.1 General Functions of Regulatory Regions 159

1.2 Most Important Elements in Regulatory Regions 160

1.3 TFBSs 160

1.4 Sequence Features 161

1.5 Structural Elements 161

1.6 Organizational Principles of Regulatory Regions 162

1.6.1 Overall Structure of Pol II Promoters 162

1.6.2 TFBS in Promoters 162

1.6.3  Module Properties of the Core Promoter 163

1.7 Bioinformatics Models for the Analysis and Detection of Regulatory
Regions 168



1.8
1.8.1
1.8.2

2.1
2.2
2.3
24

3.1
3.2
3.3
34

4.1
4.2
4.3
4.4
441

442
443
444

5.1
5.2
5.3
5.4

6.1
6.2

N

2.2
2.3

Statistical Models 168

Mixed Models 168

Organizational Models 169

Methods for Element Detection 169

Detection of TFBSs 169

Detection of Novel TFBS Motifs 171

Detection of Structural Elements 172

Assessment of Other Elements 172

Analysis of Regulatory Regions 173

Comparative Sequence Analysis 173

Training Set Selection 173

Statistical and Biological Significance 174

Context Dependency 174

Methods for Detection of Regulatory Regions 175
Scaffold /Matrix Attachment Regions (S/MARs) 176
Enhancers/Silencers 177

Promoters 177

Programs for Recognition of Regulatory Sequences 177
Programs Based on Statistical Models (General Promoter
Prediction) 178

Programs Utilizing Mixed Models 179

Programs Based on Specific Promoter Recognition 179
Early Attempts at Promoter Prediction 181
Annotation of Large Genomic Sequences 182

Balance between Sensitivity and Specificity 182

Genes — Transcripts — Promoters 183

Sources for Finding Alternative Transcripts and Promoters
Comparative Genomics of Promoters 185
Genome-wide Analysis of Transcription Control 186
Context-specific Transcripts and Pathways 187
Consequences for Microarray Analysis 187
Conclusions 189

References 190

Finding Repeats in Genome Sequences 197

Brian ]. Haas and Steven L. Salzberg

Introduction 197

Algorithms and Tools for Mining Repeats 199
Finding Intra- and Inter-sequence Repeats as Pairwise
Alignments 200

Miropeats (alias Printrepeats) 201

REPuter 202

Contents | XI

185



Xi

Contents

24
2.5
2.6
2.7
3

3.1
3.2
3.3
4

4.1

4.2
4.3
44
4.5
4.6
4.7
5

2.1
2.1.1
2.1.2
2.1.3
214
2.2

3.1
3.2
3.2.1
3.3
3.3.1
3.32

4.1
4.2

RepeatFinder 206

RECON 207

PILER 209

RepeatScout 212

Tandem Repeats 215

TRF 216

STRING (Search for Tandem Repeats IN Genomes) 218
MREPS 219

Repeats and Genome Assembly Algorithms 220
Repeat Management in the Celera Assembler and other
Assemblers 221

Repeat Identification by k-mer Counts 221

Repeat Identification by Depth of Coverage (Arrival Rates) 222
Repeat Identification by Conflicting Links 223

Repeat Placement: Rocks and Stones 223

Repeat Placement: Surrogates 223

Repeat Resolution in Euler 224

Untangling the Mosaic Nature of Repeats (The A-Bruijn
Graph) 225

Repeat Annotation in Genomes 227

References 230

Analyzing Genome Rearrangements 235
Guillaume Bourque

Introduction 235

Basic Concepts 236

Genome Representation 236

Circular, Linear and Multichromosomal Genomes 237
Unsigned Genomes 238

Unequal Gene Content 238

Homology Markers 238

Types of Genome Rearrangements 239
Distance between Two Genomes 240
Breakpoint Distance 240

Rearrangement Distance 241

HP Theory 242

Conservation Distance 244

Common Intervals 244

Conserved Intervals 245

Genome Rearrangement Phylogenies 245
Distance-based Methods 246

Maximum Parsimony Methods 247



4.3

5.1
5.2

6.1
6.2

Part 4

1.2

1.3

2.1
211

2.1.2
2.1.3
2.1.4
2.2

221

222
2.2.3
224
2.3

2.3.1
232

2.3.3
24

241
242

Contents

Maximum Likelihood Methods 248

Recent Applications 249

Rearrangements in Large Genomes 249
Genomes Rearrrangements and Cancer 252
Conclusion 253

Challenges 253

Promising New Approaches 255
References 256

Molecular Structure Prediction 267

Predicting Simplified Features of Protein Structure 261
Dariusz Przybylski and Burkhard Rost

Introduction 261

Protein Structures are Determined Much Slower than
Sequences 261

Reliable and Comprehensive Computations of 3-D Structures are
not yet Possible 261

Predictions of Simplified Aspects of 3-D Structure are often very
Successful 262

Secondary Structure Prediction 262

Assignment of Secondary from 3-D Structure 262

Regular Secondary Structure Formation is Mostly a Local
Process 262

Secondary Structures can be Somehow Flexible 263
Automatic Assignments of Secondary Structure 263
Reduction to Three Secondary Structure States 264
Measuring Performance 265

Performance has Many Aspects Relating to Many Different
Measures 265

Per-residue Percentage Accuracy: Qg 266

Per-residue Confusion between Regular Elements: BAD 266
Per-segment Prediction Accuracy: SOV 266

Comparing Different Methods 267

Generic Problems 267

Numbers can often not be Compared between Two Different
Publications 267

Appropriate Comparisons of Methods Require Large, “Blind” Data
Sets 268

History 269

First Generation: Single-residue Statistics 269

Second Generation: Segment Statistics 269

X



Xiv

Contents

243
244
245
2.5

251
252
2.5.3
254
2.6

2.6.1
2.6.2

2.6.3
2.6.4

2.6.5

2.7

2.7.1
2.7.2
2.8

2.8.1
2.8.2
2.8.3

3.1
3.2
3.3
3.4
4.1

4.2
4.3

44
4.5

5.1

5.2

Third Generation: Evolutionary Information 269

Recent Improvements of Third-generation Methods 271
Meta-predictors Improve Somehow 272

State-of-the-art Performance 272

Average Predictions Have Good Quality 272

Prediction Accuracy Varies among Proteins 273

Reliability of Prediction Correlates with Accuracy 273
Understandable Why Certain Proteins Predicted Poorly? 274
Applications 274

Better Database Searches 274

One-dimensional Predictions Assist in the Prediction of
Higher-dimensional Structure 275

Predicted Secondary Structure Helps Annotating Function 275
Secondary Structure-based Classifications in the Context of Genome
Analysis 276

Regions Likely to Undergo Structural Change Predicted
Successfully 276

Things to Remember when using Predictions 277

Special Classes of Proteins 277

Better Alignments Yield Better Predictions 277

Resources 277

Internet Services are Widely Available 277

Interactive Services 277

Servers 278

Transmembrane Regions 278

Transmembrane Proteins are an Extremely Important Class of
Proteins 278

Prediction Methods 279

Performance 279

Servers 280

Solvent Accessibility 280

Solvent Accessibility Somehow Distinguishes Structurally
Important from Functionally Important 280

Measuring Solvent Accessibility 280

Best Methods Combine Evolutionary Information with Machine
Learning 281

Performance 282

Servers 282

Inter-residue Contacts 282

Two-dimensional Predictions may be a Step Toward 3-D
Structures 282

Measuring Performance 282



Contents | XV

5.3 Prediction Methods 283

5.4 Performance and Applications 283

5.5 Servers 283

6 Flexible and Intrinsically Disordered Regions 284

6.1 Local Mobility, Rigidity and Disorder all are Features that Relate to
Function 284

6.2 Measuring Flexibility and Disorder 284

6.3 Prediction Methods 284

6.4 Servers 285

7 Protein Domains 285

7.1 Independent Folding Units 285

7.2 Prediction Methods 285

7.3 Servers 286

References 286

10 Homology Modeling in Biology and Medicine 297
Roland L. Dunbrack, |r.

1 Introduction 297

1.1 The Concept of Homology Modeling 297

1.2 How do Homologous Protein Arise? 298

1.3 The Purposes of Homology Modeling 299

1.4 The Effect of the Genome Projects 301

2 Input Data 303

3 Methods 307

3.1 Modeling at Different Levels of Complexity 307

3.2 Side-chain Modeling 309

321 Input Information 309

322 Rotamers and Rotamer Libraries 311

323 Side-chain Prediction Methods 312

324 Available Programs for Side-chain Prediction 317
3.3 Loop Modeling 317

3.3.1 Input Information 317

3.3.2 Loop Conformational Analysis 318

3.3.3  Loop Prediction Methods 320

3.34 Available Programs 321

34 Methods for Complete Modeling 322

341  MODELLER 322

3.42  MOolIDE: A Graphical User Interface for Modeling 323
343  RAMP and PROTINFO 323

344  SWISS-MODEL 323

4 Results 324

41 Range of Targets 324



XVI| Contents

4.2 Example: Protein Kinase STK11/LKB1 324

4.3 The Importance of Protein Interactions 331
5 Strengths and Limitations 334

6 Validation 335

6.1 The CASP Meeting 336

6.2 Protein Health 336

References 337

11 Protein Fold Recognition Based on Distant Homologs 351
Ingolf Sommer

1 Introduction 351

2 Overview of Template-based Modeling 352

2.1 Key Steps in Template-based Modeling 352

2.1.1 Identifying Templates 352
212 Assessing Significance 353
213 Model Building 353
214 Evaluation 354

2.2 Template Databases 354
3 Sequence-based Methods for Identifying Templates 356
3.1 Sequence-Sequence Comparison Methods 356

32 Frequency Profile Methods 357

3.21  Definition of a Frequency Profile and PSSM 357
322 Generating Frequency Profiles 359
323  Scoring Frequency Profiles 360

324 Scoring Profiles Against Sequences 360
3.25  Scoring Profiles against Profiles 361

3.3 Hidden Markov Models (HMMs) 363
3.3.1 Definition 363

3.3.2  Profile HMM Technology 364

3.3.3 HMMs in Fold Recognition 365

3.3.4 HMM-HMM Comparisons 365

34 Support Vector Machines (SVMs) 365
341 Definition 365

3.4.2 Various Kernels 366

343 Experimental Assessment 366

4 Structure-based Methods for Identifying Templates 367

4.1 Boltzmann'’s Principle and Knowledge-based Potentials 368
4.2 Threading Using Pair-interaction Potentials 369

43 Threading using Frozen Approximation Algorithms 371

5 Hybrid Methods and Recent Developments 372

5.1 Using Different Sources of Information 372



512
5.1.3
5.2
5.3

6.1
6.2

6.3

1.2
1.3

2.1
2.2
2.3
24

2.5

2.6

3.1
3.2
3.3

Contents

Incorporating Secondary Structure Prediction into Frequency
Profiles and HMMs 372

Intrinsically Disordered Regions in Proteins 373
Incorporating 3-D Structure into Frequency Profiles 374
Combining Information 374

Meta-servers 375

Assessment of Models 376

Estimating Significance of Sequence Hits 376

Scoring 3-D Model Quality: Model Quality Assessment Programs
(MQAPs) 377

Evaluation of Protein Structure Prediction:

Critical Assessment of Techniques for Protein Structure
Prediction 378

Programs and Web Resources 379

References 380

De Novo Structure Prediction: Methods and Applications 389
Richard Bonneau

Introduction 389

Scope of this Review and Definition of De Novo Structure
Prediction 389

The Role of Structure Prediction in Biology 390

De novo Structure Prediction in a Genome Annotation Context,
Synergy with Other Methods 391

Core Features of Current Methods of De Novo Structure
Prediction 393

Rosetta De Novo 393

Evaluation of Structure Predictions 396

Domain Prediction is Key 399

Local Structure Prediction and Reduced Complexity Models are
Central to Current De Novo Methods 403

Clustering as a Heuristic Approach to Approximating Entropic
Determinants of Protein Folding 405

Balancing Resolution with Sampling, Prospects for Improved
Accuracy and Atomic Detail 406

Applying Structure Prediction: De Novo Structure Prediction in a
Systems Biology Context 408

Structure Prediction as a Road to Function 408

Initial Application of De Novo Structure Prediction 409
Application on Genome-wide Scale and Examples of Data
Integration 410

XVii



XVl

Contents

3.4

4
4.1
4.2

13

1.1
1.2
1.2.1
1.2.2
1.2.3

1.24
1.3

21
2.2
2.3
24
2.5
2.6
2.7
2.7.1
2.7.2

Scaling-up De Novo Structure Prediction: Rosetta on the World
Community Grid 412

Future Directions 412

Structure Prediction and Systems Biology: Data Integration 412
Need for Improved Accuracy and Extending the Reach of De Novo
Methods 413

References 413

Structural Genomics 419

Philip E. Bourne and Adam Godzik

Overview 419

What is Structural Genomics? 419

What are the Motivators? 419

Fold Coverage as a Motivator 420

Structural Coverage of an Organism as a Motivator 424
Structure Coverage of Central Metabolism Pathways as a
Motivator 424

Disease as a Motivator 425

How Does Structural Genomics Relate to Conventional Structural
Biology? 425

Methodology 427

Target Selection 427

Crystallomics 428

Data Collection 429

Structure Solution 430

Structure Refinement 431

PDB Deposition 431

Functional Annotation 432

Biological Multimeric State 432

Active-site Determination 432

Publishing 433

Results — Number and Characteristics of Structures
Determined 434

Discussion 435

Follow-up Studies 435

Examples of Functional Discoveries 436

The Future 436

References 436

RNA Secondary Structures 439
Ivo L. Hofacker and Peter F. Stadler
Secondary Structure Graphs 439



1.1
1.2
1.3
14
1.5

21
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5

5.1

5.2
5.3
54
5.5
5.6

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2
73

Introduction 439

Secondary Structure Graphs 440

Mountain Plots and Dot Plots 443

Trees and Forests 443

Notes 444

Loop-based Energy Model 444

Loop Decomposition 444

Energy Parameters 445

Notes 447

The Problem of RNA Folding 447

Counting Structures and Maximizing Base Pairs 447
Backtracing 449

Energy Minimization in the Loop-based Energy Model 450
RNA Hybridization 453

Pseudoknotted Structures 454

Notes 454

Conserved Structures, Consensus Structures and RNA Gene
Finding 456

The Phylogenetic Method 456

Conserved Structures 457

Consensus Structures 459

RNA Gene Finding 460

Notes 463

Grammars for RNA Structures 463

Context-free Grammars (CFGs) and RNA Secondary
Structures 463

Cocke-Younger-Kasami (CYK) Algorithm 465
Inside and Outside Algorithms 465

Parameter Estimation 466

Algebraic Dynamic Programming 466

Notes 467

Comparison of Secondary Structures 468
String-based Alignments 469

Tree Editing 469

Tree Alignments 472

The Sankoff Algorithm and Variants 475

Multiple Alignments 475

Notes 476

Kinetic Folding 476

Folding Energy Landscapes 476

Kinetic Folding Algorithms 477

Approximate Folding Trajectories and Barrier Trees 478

Contents

XIX



XX

Contents

74 RNA Switches 480

7.5 Notes 481

8 Concluding Remarks 481
References 482

15 RNA Tertiary Structure Prediction 491
Frangois Major and Philippe Thibault

1 Introduction 491

2 Annotation 493

2.1 Nucleotide Conformations 494

2.2 Nucleotide Interactions 501

221 Base Stacking 502

222 Base Pairing 505

223 Isosteric Base Pairs 508

3 Motif Discovery 508

3.1 RNA Motifs 509

3.1.1 Classical Examples 509

3.2 Catalytic Motifs 513

3.3 Transport and Localization 519

4 Modeling 521

4.1 The CSP 522

4.2 MC-Sym 524

421 Backbone Optimization 527

422  Probabilistic Backtracking 529

423 “Divide and Conquer” 529

43 MC-Sym at Work 530

43.1  Modeling a Yeast tRNA-Phe Stem-Loop 532

43.2 Modeling a Pseudoknot 533

433  Cycles of Interactions 535

5 Perspectives 535
References 536

Volume 2

Part5 Analysis of Molecular Interactions 541

16 Docking and Scoring for Structure-based Drug Design 541
Matthias Rarey, Jorg Degen and Ingo Reulecke

17 Modeling Protein—Protein and Protein—-DNA Docking 601

Andreas Hildebrandt, Oliver Kohlbacher and Hans-Peter Lenhof



18

19

Part 6

20

21

22

23

Part7

24

25

26

27

28

Contents

Lead Identification by Virtual Screening 651
Andreas Kiamper, Didier Rognan and Thomas Lengauer

Efficient Strategies for Lead Optimization

by Simultaneously Addressing Affinity, Selectivity
and Pharmacokinetic Parameters 705
Karl-Heinz Baringhaus and Hans Matter

Molecular Networks 755

Modeling and Simulating Metabolic Networks 755
Stefan Schuster and David Fell

Inferring Gene Regulatory Networks 807
Michael Q. Zhang

Modeling Cell Signaling Networks 829
Anthony Hasseldine, Azi Lipshtat, Ravi lyengar and Avi Ma’ayan

Dynamics of Virus—Host Cell Interaction 861
Udo Reichl and Yury Sidorenko

Analysis of Expression Data 899

DNA Microarray Technology and Applications — An Overview 899
John Quackenbush

Low-level Analysis of Microarray Experiments 929
Wolfgang Huber, Anja von Heydebreck and Martin Vingron

Classification of Patients 957
Claudio Lottaz, Dennis Kostka and Rainer Spang

Classification of Genes 993
Jorg Rahnenfiihrer and Thomas Lengauer

Proteomics: Beyond cDNA 1023

Patricia M. Palagi, Yannick Brunner, Jean-Charles Sanchez and Ron D.

Appel

XXI



XXl

Contents

Volume 3

Part8 Protein Function Prediction 7061

29 Ontologies for Molecular Biology 1061
Chris Wroe and Robert Stevens

30 Inferring Protein Function from Sequence 1087
Douglas Lee Brutlag

31 Analyzing Protein Interaction Networks 1121
Johannes Goll and Peter Uetz

32 Inferring Protein Function from Genomic Context 1179
Christian von Mering

33 Inferring Protein Function from Protein Structure 1211
Francisco S. Domingues and Thomas Lengauer

34 Mining Information on Protein Function from Text 1253
Martin Krallinger and Alfonso Valencia

35 Integrating Information for Protein Function Prediction 1297
William Stafford Noble and Asa Ben-Hur

36 The Molecular Basis of Predicting Druggability 1315
Bissan Al-Lazikani, Anna Gaulton, Gaia Paolini, Jerry Lanfear, John
Owerington and Andrew Hopkins

Part9 Comparative Genomics and Evolution of Genomes 1335

37 Comparative Genomics 1335
Martin S. Taylor and Richard R. Copley

38 Association Studies of Complex Diseases 1375
Momiao Xiong and Li Jin

39 Pharmacogenetics/Pharmacogenomics 1427
Xing Jian Lou, Russ B. Altman and Teri E. Klein

40 Evolution of Drug Resistance in HIV 1457

Niko Beerenwinkel, Kirsten Roomp and Martin Déiumer



1

Part 10

42

43

44

Part 11

45

Analyzing the Evolution of Infectious Bacteria 1497
Dawn Field, Edward ]. Feil, Gareth Wilson and Paul Swift

Basic Bioinformatics Technologies 1525

Integrating Biological Databases 1525
Z0é Lacroix, Bertram Ludischer and Robert Stevens

Visualization of Biological Data 1573
Harry Hochheiser, Kevin W. Eliceiri and Ilya G. Goldberg

Using Distributed Data and Tools in Bioinformatics
Applications 1627

Robert Stevens, Phillip Lord and Duncan Hull
Outlook 165171

Future Trends 1651
Thomas Lengauer

Index 1687

Name Index 1727

Contents

XX



Vi

Contents

Volume 1

Preface XXV

List of Contributors XXIX
Part1 Introduction 171

1 Bioinformatics - From Genomes to Therapies 1
Thomas Lengauer

Part2 Sequencing Genomes 25

2 Bioinformatics Support for Genome-Sequencing Projects 25
Knut Reinert and Daniel Huson

Part3 Sequence Analysis 57

3 Sequence Alignment and Sequence Database Search 57
Martin Vingron

4 Phylogeny Reconstruction 83
Ingo Ebersberger, Arndt von Haeseler and Heiko A. Schmidt

5 Finding Protein-coding Genes 129
David C. Kulp

6 Analyzing Regulatory Regions in Genomes 159
Thomas Werner

Bioinformatics - From Genomes to Therapies Vol. 2. Edited by Thomas Lengauer
Copyright (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-31278-8



VIl | Contents

7 Finding Repeats in Genome Sequences 197
Brian ]. Haas and Steven L. Salzberg

8 Analyzing Genome Rearrangements 235
Guillaume Bourque

Part4 Molecular Structure Prediction 261

9 Predicting Simplified Features of Protein Structure 261
Dariusz Przybylski and Burkhard Rost

10 Homology Modeling in Biology and Medicine 297
Roland L. Dunbrack, |r.

11 Protein Fold Recognition Based on Distant Homologs 351
Ingolf Sommer
12 De Novo Structure Prediction: Methods and Applications 389

Richard Bonneau

13 Structural Genomics 419
Philip E. Bourne and Adam Godzik

14 RNA Secondary Structures 439
Ivo L. Hofacker and Peter F. Stadler

15 RNA Tertiary Structure Prediction 491
Frangois Major and Philippe Thibault

Volume 2

Part5 Analysis of Molecular Interactions 541

16 Docking and Scoring for Structure-based Drug Design 541
Matthias Rarey, Jorg Degen and Ingo Reulecke

1 Introduction 541

1.1 A Taxonomy of Docking Problems 543

1.2 Application Scenarios in Structure-based Molecular Design 544

2 Scoring Protein-Ligand Complexes 546

2.1 Modeling Protein-Ligand Interactions 546

2.2 Scoring Functions based on Force Fields 548

23 Empirical Scoring 550

2.4 Knowledge-based Scoring 551



Contents | IX

2.5 Evaluation 551

3 Methods for Protein-Ligand Docking 552

3.1 Rigid-body Docking Algorithms 552

3.1.1  Approaches based on Clique Search 553

3.1.2 Geometric Hashing 554

3.1.3  Pose Clustering 555

3.1.4 Fast Shape Comparison 557

3.2 Flexible Ligand-docking Algorithms 558

321 Conformation Ensembles 558

322 Flexible Docking based on Fragmentation 559
3.22.1 “Place & Join” Algorithms 559

3.2.2.2 Incremental Construction Algorithms 560
3.2.3 Genetic Algorithms and Evolutionary Programming 563
324 Distance Geometry 565

3.25  Random Search 565

3.3 Docking by Simulation 566

3.3.1 Simulated Annealing 566

3.3.2 MD Simulations 567

3.3.3  MC Algorithms 568

3.34  Hybrid Methods 570

4 Structure-based Virtual Screening 570

41 Considering Pharmacophoric Constraints 571

42 Docking of Combinatorial Libraries 571

4.3 Database Approaches 573

5 From Molecules to Fragment Spaces: Structure-based De Novo
Design 574

5.1 Modeling Fragment Spaces 575

52 De Novo Design Algorithms 575

52.1  Rigid-body Algorithms 576

52.2  Simulation Methods 576

523 “Place & Join” Algorithms 577

524 Sequential Growth Algorithms 578

525 Genetic Algorithms and Evolutionary Programming 579
53 Synthetic Accessibility 580

5.3.1 Fragment Selection 580

53.2  Virtual Synthesis 581

5.3.3 Compound Analysis 581

6 Structure-based Drug Design at Work: Validation Studies and
Applications 582
7 Concluding Remarks 583

References 584



X

Contents

17

21

2.2
221
222
223
224
2.2.5
2.3
23.1
2.3.1.1
2.3.1.2
2.3.1.3
232
2.3.3

24
241
242
2.5
251
252
2.6

3.1
3.2
3.21
322
3.3

18

1.1
1.2
1.3

Modeling Protein—Protein and Protein—-DNA Docking 601
Andreas Hildebrandt, Oliver Kohlbacher and Hans-Peter Lenhof
Introduction 601

Protein—Protein Interactions 603

Basic Concepts of Docking 603

Rigid Body Docking 606

Correlation Techniques 606

Graph-based Structure Generation Methods 610
Slice Decomposition and Polygon Descriptors 612
Critical Surface Points and Geometric Hashing 614
Other Approaches 615

Realizing Protein Flexibility 615

Side Chain Placement 617

Dead End Elimination 618

“Branch & Bound” and the A* Algorithm 619
Integer Linear Programming 621

Hinge-bending 624

Biased Probability Monte Carlo (BPMC) Conformational
Search 626

Scoring Functions 627

Empirical Potentials 628

Knowledge-based Potentials 630

Data-driven Docking 632

Experimental Techniques 632

Algorithmic Approaches 633

Assessment of Docking Predictions 634
Protein-DNA Interactions 638

Peculiarities of Protein-DNA Binding 638
Algorithmic Techniques 639

Correlation Techniques 639

Monte Carlo Techniques 640

Scoring Functions 641

Conclusion 642

References 644

Lead Identification by Virtual Screening 651
Andreas Kimper, Didier Rognan and Thomas Lengauer
Introduction 651

Screening Techniques 652

Drug Discovery Process 653

Compound Collections 654

Filtering and Preparation of Ligands 655



Contents | XI

2.1 Library Preprocessing 656

22 Bioavailability 658

23 Drug-likeness 659

2.4 Molecular Diversity 660

3 Ligand-based VS 662

3.1 Descriptor-based Similarity Measures 664
32 Bit String Descriptors 665

3.3 Feature Trees 666

3.4 Molecular Superimposition Approaches 667
3.5 Pharmacophore Searches 669

3.6 QSARs 670
3.7 Other Techniques 672

4 Postprocessing of Hitlists 672

4.1 Data Mining 673

42 Analysis of the Protein-Ligand Interface 674
43 Consensus Techniques 675

4.4 Visualization 676

5 Critical Evaluation of Structure-based VS 677
51 Influence of Parameter Settings 677

5.1.1 Which Library? 677

5.1.2 Which Ligand Conformation(s)? 678
513  Which Protein Coordinates? 678
5.1.4 Which Docking Tool? 678

5.15 Which Scoring Function? 679

5.1.6 Which Postprocessing? 680

52 Recent Success Stories 681

521 Some Privileged Targets 681

52.2  First-in-class Compounds 684

523 Fragment Screening 685

524 Lead Optimization 686

52.5  Homology Models as VS Targets 686

53 Concluding Remarks 687

6 Critical Evaluation of Ligand-based VS 687

6.1 Influence of Parameter Settings 687

6.2 Recent Success Stories 688

6.3 Comparison of Structure- and Ligand-based Techniques 691
6.4 Concluding Remarks 692

References 693



Xi

Contents

19

3.1
3.2
3.3
34
3.5

4.1
4.2
4.3
44

5.1

52

6.1

6.2
6.3

Part 6

20

2.1
2.2
2.3
24

3.1
3.2

Efficient Strategies for Lead Optimization by Simultaneously
Addressing Affinity, Selectivity and Pharmacokinetic

Parameters 705

Karl-Heinz Baringhaus and Hans Matter

Introduction 705

The Origin of Lead Structures 708

Optimization for Affinity and Selectivity 711

Lead Optimization as a Challenge in Drug Discovery 711

Use and Limitation of Structure-based Design Approaches 712
Integration of Ligand- and Structure-based Design Concepts 713
The Selectivity Challenge from the Ligand’s Perspective 716
Selectivity Approaches Considering Binding Site Topologies 717
Addressing Pharmacokinetic Problems 721

Prediction of Physicochemical Properties 721

Prediction of ADME Properties 722

Prediction of Toxicity 724

Physicochemical and ADMET Property-based Design 724
ADME/ Antitarget Models for Lead Optimization 724

Global ADME Models for Intestinal Absorption and Protein
Binding 724

Selected Examples to Address ADME /Toxicology Antitargets 728
Integrated Approach 732

Strategy and Risk Assessment 732

Integration 734

Literature and Aventis Examples on Aspects of Multidimensional
Optimization 735

Conclusions 742

References 743

Molecular Networks 755

Modeling and Simulating Metabolic Networks 755
Stefan Schuster and David Fell

Introduction 755

Fundamentals 756

Motivation 756

Stoichiometry 757

Balance Equations 759

Enzyme Kinetics 760

Network Analysis 762

Conservation Relations 762

Stationary States and Stability Analysis 764



3.3
34
3.5
3.6
3.7
3.8

4.1
4.2
4.3
44
4.5

21

2.1
2.2
2.3
24

3.1
3.2

22

1.1
1.2
1.2.1
1.2.2
1.2.3

2.1

Contents

Constraints on Steady-state Fluxes 766

Defining Component Pathways of a Network 769
Examples of Elementary-modes Analysis 771
Extreme Pathways 777

Optimization of Molar Yields and Flux Balance Analysis (FBA) 778
Analyzing the Robustness of Metabolism 781
Dynamic Simulation 782

How is a Dynamic Model Constructed? 782
Metabolic Databases 788

Example: Red Blood Cell Metabolism 790
Oscillations 792

Whole-cell Modeling 794

Conclusions 797

References 798

Inferring Gene Regulatory Networks 807

Michael Q. Zhang

Introduction 807

Gene Regulation at the Transcriptional Level 808
Finding TFBSs and Motifs 809

Identifying Target Genes 809

Discovering Novel Motifs and Target Genes 810
Inferring GRN Modules and Integrating Diverse Types of Data 812
Gene Regulation at the Level of RNA Processing 813
Identification of Splicing Enhancers and Silencers 814
Splicing Microarrays 814

Gene Regulation at the Translational Level 815

Gene Regulation by Small ncRNAs 816

GRNs in Development and Evolution 817

References 819

Modeling Cell Signaling Networks 829

Anthony Hasseldine, Azi Lipshtat, Ravi lyengar and Avi Ma’ayan
Introduction 829

Components and Cascades 829

From Pathways to Networks 832

Interactions between Signaling Pathways 832
Implications of Network Topology 834

Network Motifs 835

Types of Models and the Information they can Yield 839
Boolean Networks and Bayesian Networks Modeling
Approaches 839

X



XIV| Contents

22 Quantitative Dynamics Modeling 841
221 Deterministic Models 843

222 Stochastic Models 846

223  Hybrid Models 849

3 Identifying Parameters/Data Sets for Modeling 850
3.1 Functionally Relevant Connections 850

3.2 Qualitative Relationships 850

3.3 Quantitative Specifications 851

4 Model Validation 853

4.1 Parameter Variation and Sensitivity Analysis 853
4.2 Constraints and Predictions 854

5 Perspective 855

References 858

23 Dynamics of Virus—Host Cell Interaction 861
Udo Reichl and Yury Sidorenko
1 Introduction 861
2 Viral Infection of Cells 863
2.1 Viral Infection of Prokaryotic Cells 864
2.2 Viral Infection of Eukaryotic Cells 866
3 Mathematical Models of Virus Dynamics 868
3.1 Unstructured Models of Virus Dynamics 869
32 Structured Models of Virus Dynamics 871
4 Influenza Virus as an Example for Virus—-Host Cell Interaction 872
41 The Influenza A Virus Life Cycle 873
42 Mathematical Model of the Influenza A Virus Life Cycle 877
4.3 Influenza A Virus Growth Dynamics 880
44 Discussion and Outlook 886
5 Conclusions 887

References 892

Part7  Analysis of Expression Data 899

24 DNA Microarray Technology and Applications — An Overview 8§99
John Quackenbush

1 Introduction to DNA Microarrays 899

2 Microarrays and Clinical Applications 899

3 Microarray Data Collection, Transformation and
Representation 902

4 Identifying Patterns of Expression 905

5 Class Discovery 906

5.1 Hierarchical Clustering 906



52
5.3

6.1

10
11
12

25

1.1
1.2
1.3

2.1
2.2
2.3
24
2.5
2.6

3.1

3.1.1
3.12
3.1.3
3.2

3.2.1
322

5.1
5.2

5.3

k-means Clustering 907

Other Unsupervised Approaches 911
Classification 911

kNN Classification 912

Validation 914

Sample Selection and Classification 915
Limitations and Success of Classification 915
Data Reporting and Comparisons 916
Meta-analysis 919

The Path Forward 922

References 923

Low-level Analysis of Microarray Experiments 929
Wolfgang Huber, Anja von Heydebreck and Martin Vingron
Introduction 929

Microarray technology 929

Prerequisites 930

Preprocessing 931

Visualization and Exploration of the Raw Data 932
Image Analysis 932

Dynamic Range and Spatial Effects 933

Scatterplot 934

Batch Effects 938

Along Chromosome Plots 941

Sensitivity and Specificity of Probes 942

Error Models 943

Motivation 943

Obtaining Optimal Estimates 943

Biological Inference 944

Quality Control 944

The Additive-Multiplicative Error Model 944
Induction from Data 944

A Theoretical Deduction 946

Normalization 947

Detection of Differentially Expressed Genes 949
Stepwise versus Integrated Approaches 949
Measures of Differential Eexpression: The Variance Bias
Trade-off 950

Identifying Differentially Expressed Genes from Replicated

Measurements 951
Software 953
References 954

Contents | XV



XVI| Contents

26 Classification of Patients 957
Claudio Lottaz, Dennis Kostka and Rainer Spang
1 Introduction 957
2 Molecular Diagnosis 958
2.1 Problem Statement 958

2.1.1 Notation 959

212 Loss and Risk 960

2.1.3  Bayes Classifier and Bayes Error 960

2.1.4 Minimal Empirical Risk and Maximum Likelihood 961

2.1.5 Regularized Risk and Priors 961

2.2 Supervised Classification 963

221 Discriminant Analysis and Feature Selection 964

222 Penalized Logistic Regression 965

223 Support Vector Classification 966

224 Bagging 967

225 Boosting 968

2.3 Gene Selection 968

231 Filter Approaches 969

232  Wrapper Approaches 969

2.4 Adaptive Model Selection and Validation 970

241 Adaptive Model Selection 970

2.4.1.1 Bias-variance Trade-off 970

2.4.1.2 Choosing a Trade-off via the Hold Out 971

2.4.1.3 Using Data More Efficiently via Cross-Validation 972

2.42  Validation of the Predictive Performance of a Molecular
Signature 972

2.4.2.1 Estimating Error Rates 973

2.4.2.2 Selection Bias and Nested Loop Cross-validation 974

25 Discussion 975
3 Finding Molecular Disease Entities 975
3.1 Clustering 976

3.1.1 Clustering Algorithms 976

3.1.2 The Problem of Distances 977

32 Searching for Partitionings 978

321 Overlapping Partitionings 978

322 Search and Find 978

3.2.3 ISIS — Identifying Splits with Clear Separation 978
324  Overabundance of Differential Genes 980
3.25  Best-fitting Gaussian Model 980

3.3 Biclustering 980

34 Semisupervised Methods 981

3.4.1 Molecular Symptoms 981



34.2
343
3.5

3.5.1
3.5.2
3.53
3.54
355

27

2.1
2.2

3.1

3.1.1
3.1.2
3.13
3.14
3.15
3.2

321
322
3.2.3

4.1
411
4.1.2
4.2

421
422
423
424

5.1
5.1.1
5.1.2

Survival-driven Class-finding 981
Towards Survival Prediction 983
Validating Unsupervised Analysis 983
Statistical Significance 983

Stability 983

Detect Consensus by Subsampling 984
Adding Simulated Noise 984
Over-represented Pathways 984
Conclusions 985

References 986

Classification of Genes 993

Jorg Rahnenfiihrer and Thomas Lengauer

Introduction 993

Overview of Gene Classification Tasks 994

Grouping Genes without Additional Information 995
Functional Predictions 995

Grouping Genes on the Basis of Expression Data 996
Cluster Analysis 996

Similarity Measures 996

Hierarchical Clustering Algorithms 997

Partitioning Clustering Algorithms 999

Model-based Clustering 1001

Biclustering Algorithms 1002

Heuristic Gene Grouping of Expression Data 1003
CLICK Algorithm 1003

CAST 1004

Gene shaving 1004

Predicting Gene Function from Expression Data 1005
Classification methods 1006

Support Vector Machines (SVMs) 1006

Rule-based Models 1006

Supplementing Expression Data with Additional Biological
Information 1007

Adding Sequence Data 1009

Adding Gene Ontology Data 1009

Integrating Pathway Information 1011

Combination of Multiple Data Types 1012

Evaluation 1014

Assessing the Biological Relevance of Gene Groups 1015
Validation of Clustering Results 1015

Estimating the Number of Clusters in a Data Set 1016

Contents

XVii



XVl

Contents

52 Assessing Function Prediction Accuracy 1017
6 Conclusions 1017
References 1018
28 Proteomics: Beyond cDNA 1023
Patricia M. Palagi, Yannick Brunner, Jean-Charles Sanchez
and Ron D. Appel
1 Introduction and Principles 1023
2 Proteomics Analytical Methods 1026
2.1 Electrophoresis Gels 1026
2.2 LC 1028
2.3 MS 1030
2.4 Protein Chips 1033
3 Computer Analysis of Proteomics Images 1034
3.1 Analysis of 2-DE Gels 1034
3.1.1 Data Analysis and Validation 1035
3.1.2 Annotation and Databases 1038
3.2 Analysis of LC-MS Images 1038
4 Identification and Characterization of Proteins after
Separation 1039
4.1 Identification with MS 1041
4.2 Characterization with MS 1046
5 Proteome Databases 1047
5.1 Protein Sequence Databases 1048
5.2 2-DE Gel Databases 1049
5.3 Mass Spectra Repositories 1051
5.4 PTM Databases 1051
5.5 General Considerations on Databases 1053
6 Conclusion 1053
References 1054
Volume 3
Part8 Protein Function Prediction 7061
29 Ontologies for Molecular Biology 1061
Chris Wroe and Robert Stevens
30 Inferring Protein Function from Sequence 1087

Douglas Lee Brutlag



31

32

33

34

35

36

Part 9

37

38

39

40

1

Part 10

42

Analyzing Protein Interaction Networks 1121
Johannes Goll and Peter Uetz

Inferring Protein Function from Genomic Context 1179
Christian von Mering

Inferring Protein Function from Protein Structure 1211
Francisco S. Domingues and Thomas Lengauer

Mining Information on Protein Function from Text 1253
Martin Krallinger and Alfonso Valencia

Integrating Information for Protein Function Prediction 1297
William Stafford Noble and Asa Ben-Hur

The Molecular Basis of Predicting Druggability 1315
Bissan Al-Lazikani, Anna Gaulton, Gaia Paolini, Jerry Lanfear,
John Overington and Andrew Hopkins

Comparative Genomics and Evolution of Genomes 1335

Comparative Genomics 1335
Martin S. Taylor and Richard R. Copley

Association Studies of Complex Diseases 1375
Momiao Xiong and Li [in

Pharmacogenetics/Pharmacogenomics 1427
Xing Jian Lou, Russ B. Altman and Teri E. Klein

Evolution of Drug Resistance in HIV 1457
Niko Beerenwinkel, Kirsten Roomp and Martin Diaumer

Analyzing the Evolution of Infectious Bacteria 1497
Dawn Field, Edward ]. Feil, Gareth Wilson and Paul Swift

Basic Bioinformatics Technologies 1525

Integrating Biological Databases 1525
Z0é Lacroix, Bertram Ludischer and Robert Stevens

Contents

XIX



XX

Contents

43

44

Part 11

45

Visualization of Biological Data 1573
Harry Hochheiser, Kevin W. Eliceiri and Ilya G. Goldberg

Using Distributed Data and Tools in Bioinformatics
Applications 1627

Robert Stevens, Phillip Lord and Duncan Hull
Outlook 165171

Future Trends 1651
Thomas Lengauer

Index 1687

Name Index 1727



Vi

Contents

Volume 1

Preface XXV

List of Contributors XXIX
Part1 Introduction 171

1 Bioinformatics - From Genomes to Therapies 1
Thomas Lengauer

Part2 Sequencing Genomes 25

2 Bioinformatics Support for Genome-Sequencing Projects 25
Knut Reinert and Daniel Huson

Part3 Sequence Analysis 57

3 Sequence Alignment and Sequence Database Search 57
Martin Vingron

4 Phylogeny Reconstruction 83
Ingo Ebersberger, Arndt von Haeseler and Heiko A. Schmidt

5 Finding Protein-coding Genes 129
David C. Kulp

6 Analyzing Regulatory Regions in Genomes 159
Thomas Werner

Bioinformatics - From Genomes to Therapies Vol. 3. Edited by Thomas Lengauer
Copyright (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-31278-8



Vil

Contents

7 Finding Repeats in Genome Sequences 197
Brian ]. Haas and Steven L. Salzberg

8 Analyzing Genome Rearrangements 235
Guillaume Bourque

Part4 Molecular Structure Prediction 261

9 Predicting Simplified Features of Protein Structure 261
Dariusz Przybylski and Burkhard Rost

10 Homology Modeling in Biology and Medicine 297
Roland L. Dunbrack, |r.

11 Protein Fold Recognition Based on Distant Homologs 351
Ingolf Sommer

12 De Novo Structure Prediction: Methods and Applications 389
Richard Bonneau

13 Structural Genomics 419
Philip E. Bourne and Adam Godzik

14 RNA Secondary Structures 439
Ivo L. Hofacker and Peter F. Stadler

15 RNA Tertiary Structure Prediction 491
Frangois Major and Philippe Thibault

Volume 2

Part5 Analysis of Molecular Interactions 541

16 Docking and Scoring for Structure-based Drug Design 541
Matthias Rarey, Jorg Degen and Ingo Reulecke

17 Modeling Protein—Protein and Protein—-DNA Docking 601
Andreas Hildebrandt, Oliver Kohlbacher and Hans-Peter Lenhof

18 Lead Identification by Virtual Screening 651

Andreas Kimper, Didier Rognan and Thomas Lengauer



Contents | IX

19 Efficient Strategies for Lead Optimization
by Simultaneously Addressing Affinity, Selectivity
and Pharmacokinetic Parameters 705
Karl-Heinz Baringhaus and Hans Matter

Part6 Molecular Networks 755

20 Modeling and Simulating Metabolic Networks 755
Stefan Schuster and David Fell

21 Inferring Gene Regulatory Networks 807
Michael Q. Zhang

22 Modeling Cell Signaling Networks 829
Anthony Hasseldine, Azi Lipshtat, Ravi lyengar and Avi Ma’ayan

23 Dynamics of Virus—Host Cell Interaction 861
Udo Reichl and Yury Sidorenko

Part7  Analysis of Expression Data 899

24 DNA Microarray Technology and Applications — An Overview 8§99
John Quackenbush
25 Low-level Analysis of Microarray Experiments 929

Wolfgang Huber, Anja von Heydebreck and Martin Vingron

26 Classification of Patients 957
Claudio Lottaz, Dennis Kostka and Rainer Spang

27 Classification of Genes 993
Jorg Rahnenfiihrer and Thomas Lengauer

28 Proteomics: Beyond cDNA 1023

Patricia M. Palagi, Yannick Brunner, Jean-Charles Sanchez
and Ron D. Appel

Volume 3
Part8 Protein Function Prediction 7061

29 Ontologies for Molecular Biology 1061
Chris Wroe and Robert Stevens



X | Contents

1 Introduction 1061

2 Ontologies and their Components 1063

2.1 Ontology Representation 1065

3 Ontologies in the Real World 1067

3.1 Ontology Tools 1068

3.2 Bio-ontology Communities 1069

3.3 Incremental Development of Ontologies 1071

3.4 Ontology Features to Manage Database Content 1072

341 A Controlled Vocabulary with Human Readable Definitions 1072
34.1.1 Gene Ontology 1072

3.4.1.2 MGED Ontology 1073

3.4.2 A Structured Controlled Vocabulary 1075

3.43 A Subsumption Hierarchy 1075

3.4.4 Multiple Hierarchies 1076

3.4.5 Formal Definition of Concepts 1077

3.5 Ontology Features to Manage Data Schemata 1080
351  TAMBIS 1081

3.6 Ontologies for Prediction and Simulation 1082
3.6.1 EcoCyc 1082

3.7 The Physiome Project 1083

4 Summary 1083

References 1085

30 Inferring Protein Function from Sequence 1087
Douglas Lee Brutlag
1 Introduction 1087
2 Sequence-based Motif Representations 1090
2.1 Consensus Sequences as Regular Expressions 1090
2.2 Accuracy and Precision of Motifs 1091
2.3 Position-specific Scoring Matrix (PSSM) Motifs 1094
2.4 Dirichlet-mixture Prior Probabilities and Pseudocounts 1094

2.5 Sensitivity and Specificity of PSSM Motifs 1096
2.6 HMMs 1098
2.7 Network Models 1099

2.8 Neural Networks 1101
3 Descriptions of Several Useful Motif Databases 1101
3.1 The Prosite Database 1101

3.2 The Blocks Databases 1104
3.3 The PRINTS Database 1105
3.4 The eBLOCKSs Database 1106
3.5 The eMOTIF Database 1107
3.6 The eMATRIX Database 1108



Contents | XI

3.7 HMM Databases 1109

3.8 The InterPro Database 1110
3.9 Supervised versus Unsupervised Learning of Motifs 1111
4 Summary and Conclusions 1112

References 1113

31 Analyzing Protein Interaction Networks 1121
Johannes Goll and Peter Uetz

1 Introduction 1121

2 Experimental Methods and Interaction Data 1122

3 Validation of Experimental Protein-Protein Interaction Data 1125

3.1 Crystal Structures as Benchmarks 1126

3.2 Overlap with Protein Complex Data 1126

3.3 Correlation with Expression Data 1126

3.4 Functional Annotation 1127

3.5 Localization 1127

3.6 Paralogous Proteins and Evolutionary Rate 1127

3.7 Other Approaches 1128

3.8 Combined Approaches 1128

39 Comparison of Specific Data Sets 1129

39.1 Comparison of Tandem Affinity Purification (TAP) and
High-throughput MS (HMS) complex purification data 1129

3.9.2  Comparison between Y2H and MS data sets 1131

39.3  Comparison of Spoke versus Matrix Models 1131

4 Predicting Protein—Protein Interactions 1133

4.1 Predictions Based on Genomic Context 1138

411 The Rosetta Stone Method 1138

412  Gene Neighborhood 1139

41.3  Phylogenetic Profiles 1139

414 Similarity of Phylogenetic Trees (SPT) 1140

4.1.5 In Silico Two-hybrid (I2H) 1140

4.2 Predictions Based on Known 3-D Structures 1140

4.3 Predicting Interaction Domains 1140

4.4 Predicting Homologous Interactions: Interologs 1141

45 Predictions based on Literature Mining 1143

4.6 Validation of Predicted Protein—Protein Interactions 1144
5 Representing Protein—Protein Interactions as Graphs 1145
5.1 Graph Terminology 1145

5.2 Network Models 1148

5.3 Random Networks 1149

5.4 Small-world Networks 1149

5.5 Scale-free Networks 1150



Xi

Contents

5.6

5.7
5.8
5.9

6

6.1
6.2

7

8

8.1
8.1.1
8.2
8.2.1
8.2.2

8.3

10
11

32

1.1
1.2
1.3
14

2.1
2.2
2.3
24

3.1
3.2
3.3

4.1
4.2
4.3

Connectivity Distributions of Protein—Protein Interaction
Networks 1151

Error Tolerance and Attack Vulnerability 1151

Modules and Motifs in Networks 1152

Comparing Protein Interaction Networks: Pathblast 1152
Integrating Multiple Protein—Protein Interaction Evidence 1154
Protein Interactions and Gene Expression Data 1157
Integration for Predicting Protein Function 1157
Predicting Protein Functions from Protein Networks 1157
Evolution of Protein—Protein Interactions 1158

The Network Level 1159

The Rates of Interaction Loss and Gain 1159

Sequence and Interaction Divergence in Proteins 1160
Protein Evolution Rate and Protein—Protein Interactions 1161
Phylogenetic Relationships between Families of Interacting
Proteins 1162

Structural Aspects of Conserved Interactions 1165
Databases and Other Information Sources 1165

Analysis and Visualization Tools 1166
Outlook/Perspectives 1166

References 1171

Inferring Protein Function from Genomic Context 1179

Christian von Mering

Introduction 1179

Genomic Context — Genomes, Genes and Gene Arrangements 1179
Genome Comparisons Reveal Protein-Protein Associations 1180
Prerequisites for Genomic Context Analysis 1181

How Specific are the Inferred Functions? 1182

Gene Neighborhood 1183

Conserved Neighborhood versus Simple Synteny 1183

Operons and “Uber-Operons” 1185

Divergently Transcribed Gene Pairs 1187

Gene Neighborhood in Eukaryotes 1189

Gene Fusion 1190

Gene Fusions and Gene Fissions 1190

Functional Implications 1191

Gene Fusions versus Domain Analysis 1193

Gene Co-occurrence 1194

Phylogenetic Profiles 1194

Discrete versus Continuous Profiles 1196

Profile Distance Measures 1197



44
4.5

5.1
5.2
5.3
5.4

5.5

33

1.1
1.2
1.3
1.4
1.5
1.6

1.7

21
2.2
2.3
24
241
242
243
25
2.6
2.6.1
2.6.2

3.1

3.1.1
3.12
3.1.3
3.2

3.21
322

Contents

Tree-based Methods 1198

Anti-correlated Profiles 1199

Outlook 1200

Methods based on Sequence Evolution 1200

Web-based Implementations of Genomic Context Tools 1202
Scoring and Integration 1204

Genome Sequencing Strategies: Impact on Genomic Context
Analysis 1205

Environmental Context 1207

References 1208

Inferring Protein Function from Protein Structure 1211
Francisco S. Domingues and Thomas Lengauer
Introduction 1211

Different Levels of Protein Function 1212

Structural Models 1212

Homology and Function 1213

Structure and Function 1214

Why Predict Function from Structure 1216

The Challenges of Automatic Prediction of Function from
Structure 1217

Structure of the Chapter 1217

Localization of Functional Sites 1218

Supersites 1218

Electrostatics 1218

Surface Geometry 1218

Structure and Evolutionary Information 1219
Evolutionary Trace (ET) 1219

ConSurf 1220

Residue Conservation and Structural Information 1221
Network Centrality 1222

Combined Approaches 1223

Catalytic Sites in Enzymes 1223

Protein—protein Interactions 1223

Characterization of Molecular Function 1224

General Principles 1224

Homology versus Nonhomology 1224

Uncertainty and Flexibility in the Structural Models 1225
Functional Descriptors, Comparison and Scoring 1226
Descriptors based on Atom Coordinates 1227
ASSAM 1227

SPASM 1228

X



XIV| Contents

323  PINTS 1228

324 SuMo 1229

3.2.5 TESS and Jess 1230

3.3 Descriptors based on Chemical Environment and Surface 1232
3.3.1  FEATURE 1232

332  CavBase and SiteEngine 1233

3.3.3 eF-site 1234

334  pvSOAR 1234

3.3.5  Enzyme Classifier 1236

3.3.6 3D Shape Descriptors 1236

3.4 Databases of Functional Sites 1237
341 Relibase 1237

3.42  MSDsite 1238

343  CSA 1238

3.44  SURFACE 1238

3.4.5  Databases of Structural Motifs 1239
3.4.6 Protein—protein Binding Sites 1239

4 Integration Efforts 1239

5 Resources for Structural Characterization 1241
51 Available Tools and Databases 1241

52 Characterizing a Protein 1242

6 Current Applications 1243

7 Future Perspectives 1244

References 1245

34 Mining Information on Protein Function from Text 1253
Martin Krallinger and Alfonso Valencia

1 Introduction 1253

2 Information Types of Protein Function Descriptions 1255
3 Literature Databases in Biomedicine 1256
4 NLP 1258

4.1 Grammatical Features 1258

4.2 Morphological Features 1259

43 Syntactic Features 1259

44 Semantic Features 1260

4.5 Contextual Features 1261

5 Main NLP Tasks 1261

5.1 IR 1261

5.2 IE 1265

5.3 QA 1266

5.4 NLG 1268

6 Difficulties when Processing Biological Texts 1268



Contents | XV

7 Strategies of Extracting Functional Information from Text 1271

7.1 NER and Protein Tagging 1271

7.2 Associating Proteins with Biological Features from Databases and
Ontologies 1274

73 Mining Interactions and Relations from Text 1278

7.4 Discovering Information Associated with Groups of Proteins 1281

7.5 Other Applications 1282

8 Evaluation of Text Mining Strategies 1283

9 Resources for Text Mining 1285

9.1 Literature Databases 1286

9.2 Annotated Text Corpora 1286

9.3 Generic NLP Tools 1286

9.4 Dictionaries and Ontologies 1288

9.5 Biomedical Domain NLP Systems 1289

10 Concluding Remarks 1289

References 1291

35 Integrating Information for Protein Function Prediction 1297
William Stafford Noble and Asa Ben-Hur

Introduction 1297

Vector-space Integration 1298

Classifier Integration 1301

Kernel Methods 1302

Learning Functional Relationships 1304

Learning Function from Networks of Pairwise Relationships 1307
Discussion 1311

References 1311

N O Ul WN =

36 The Molecular Basis of Predicting Druggability 1315
Bissan Al-Lazikani, Anna Gaulton, Gaia Paolini, Jerry Lanfear, John
Owerington and Andrew Hopkins

1 Introduction 1315

2 Chemical Properties of Drugs, Leads and Tools 1316

3 Molecular Recognition is the Basis for Druggability 1316

4 Estimating the Size of the Druggable Genome 1319

4.1 Initial Estimates 1320

42 Hopkins and Groom’s Method 1320

4.3 Orth and Coworkers Update 2004 1321

4.4 Russ and Lampel’s Update 2005 1321

5 Homology-based Analysis of Drug Targets 1322

6 Feature-based Druggability Prediction 1327



XVI| Contents

7 Structure-based Druggability Analysis of Protein Data Base (PDB)
Structures 1327

8 How Many Drug Targets are Accessible to Protein
Therapeutics? 1329

9 Conclusions 1331

References 1333
Part9 Comparative Genomics and Evolution of Genomes 1335

37 Comparative Genomics 1335
Martin S. Taylor and Richard R. Copley

1 Introduction 1335

2 The Genomic Landscape 1336

3 Concepts 1339

4 Practicalities 1343

4.1 Available Genomic Sequences 1343

42 Defining and Obtaining Genomic Sequences 1345
5 Technology 1347

5.1 Alignments 1347

5.1.1 Local Genomic Alignments 1349

512  Global Genomic Alignments 1350

5.1.3 Multiple Sequence Alignments 1351

514  Assessing the Quality of Genomic Alignment Tools 1353
5.1.5 Using Whole-genome Alignments 1354

52 Visualizing Genomic Alignments 1355

53 Detecting Selection 1357

6 Applications 1361

6.1 How Much of the Human Genome is Constrained? 1362
6.2 Ultra-conserved Regions 1363

6.3 Specific Locus Studies 1364

7 Challenges and Future Directions 1367

8 Conclusion 1368

References 1368

38 Association Studies of Complex Diseases 1375
Momiao Xiong and Li Jin
1 Introduction 1375

Linkage Disequilibrium (LD), Haplotype and Association
Studies 1378

2.1 Concepts of LD 1378

22 Measures of LD 1379

221 LD Coefficient D 1379



222
223
224
225

2.3
2.3.1
232
2.3.3
234
2341
2342
2.34.3

235
2.3.5.1
2352
2.3.5.3
2.3.6

3.1
3.2
3.3
34
3.5

4.1
4.1.1
4.1.2
413
4.2

5.1
5.2

6.1
6.2

6.3
6.3.1

Contents

Normalized Measure of LD D’ 1379

Correlation Coefficient r 1380

Composite Measure of LD 1380

The Relationship between the Measure of LD and Physical
Distance 1380

SNPs and Haplotype Blocks in the Human Genome 1381
SNPs 1381

Tagging SNPs 1381

Haplotype Block Model 1381

Definitions of Haplotype Block 1383

Definition of Haplotype Blocks based on Pairwise LD 1384
Definition of Haplotype Blocks based on Haplotype Diversity 1384
Definition of Haplotype Blocks based on both Pairwise LD and
Haplotype Diversity 1384

Haplotype Reconstruction 1385

Clark’s Algorithm 1385

Expectation Maximization (EM) Algorithm 1386

Bayesian and Coalescence-based Methods 1386

Measure of Haplotype Block LD 1387

A General Framework for Population-based Association
Studies 1387

Motivation 1387

The Traditional y2 Test Statistic 1389

Test Statistics 1391

Null Distribution of the Nonlinear Statistics 1392

Power of the Nonlinear Test Statistics and the Standard 2 Test
Statistic 1393

Similarity-based Statistics for Association Studies 1400
Similarity Measures 1400

Matching Measure 1402

Counting Measure 1403

Length Measure 1403

Test Statistics 1403

Generalized T? Test Statistic 1404

Test Statistic 1405

Nonlinear T? test 1406

Family-based Association Studies 1406

TDT at a Single Locus with Two Alleles 1407

TDT at a Single Locus with Multiple Alleles or at Multiple Loci with
Phase-known Haplotypes 1407

Sib-TDT 1409

Comparison of Genotype Frequencies 1409

XVii



XV | Contents

6.3.2 Comparison of Allele Frequencies 1410

7 Nonlinear Transmission/Disequilibrium Test 1410
7.1 General Procedures for the Construction of the Nonlinear
TDT 1412

7.1.1 A Single Locus with Two Alleles 1412
7.1.2 A Single Locus with Multiple Alleles or Multiple Loci with
Phase-known Haplotypes 1413

7.2 Power of the N\ nonlinear TDT 1414
7.3 Real Examples 1415
8 Perspective of Genome-wide Association Studies 1416

References 1417

39 Pharmacogenetics/Pharmacogenomics 1427
Xing Jian Lou, Russ B. Altman and Teri E. Klein
1 Introduction 1427
2 An Overview of Pharmacogenetics and Pharmacogenomics 1427
2.1 Background of Pharmacogenetics and Pharmacogenomics 1428
22 Influence of Pharmacogenetics and Pharmacogenomics
on Drug Development and Therapy 1429
3 Biomedical Informatics Resources Relevant to
Pharmacogenomics 1430
4 Building the PharmGKB 1433
41 Establishing a Repository of Pharmacogenetics and

Pharmacogenomics Information 1435

411 The Data Model 1435

412 Primary Data 1436

413 Data from Literature 1437

4.1.4 Linking to other Data Resources 1438

4.2 Turning Data into Knowledge 1439

421 Categorizing Data 1440

4211 Genotype 1440

4212 Clinical Outcome 1441

42.1.3 Pharmacodynamics and Drug Responses 1441

4214 Pharmacokinetics 1441

42.1.5 Molecular and Cellular Functional Assays 1442

422 Establishing Genotype-Phenotype Correlation 1442

423 Using Pathways to Summarize Current Pharmacogenetics and
Pharmacogenomics Knowledge 1443

43 Providing Easy Access of Knowledge for the Research
Community 1443

431 Querying System 1445

43.2 Visualization and Browsing 1445



4.3.3
434

40

2.1

211
2.1.2
213
2.2

221
222
2.3

231
232

3.1
3.2
3.3

4.1
4.2
4.3
44

5.1
52
5.3
54

6.1
6.1.1
6.1.2
6.2
6.2.1
6.2.2

Privacy Protection 1447

Data Exchange Strategy 1449

Analytic Tools for Pharmacogenomics 1449
Future Perspectives on Informatics for
Pharmacogenetics/Pharmacogenomics 1451
References 1452

Evolution of Drug Resistance in HIV 1457

Niko Beerenwinkel, Kirsten Roomp and Martin Déiumer
Introduction 1457

Biomedical Background 1458

Biology of HIV 1458

Epidemiology of HIV/AIDS 1458

Structure, Genome and Replication Cycle 1459
Basic Immunology and Course of Infection 1461
Antiretroviral Therapy 1462

Antiretroviral Drugs 1462

Drug Resistance 1464

Resistance Testing 1464

Genotypic Resistance Testing 1465

Phenotypic Resistance Testing 1465

Prediction of Phenotypic Resistance from Genotypes 1466
Drug Resistance Data 1466

Methods of Phenotype Prediction 1467
Comparisons 1468

Development of Resistance-associated Mutations 1470
Viral Evolution 1470

Learning Mutational Pathways 1472

Genetic Barrier 1473

Transitions between Sequence Clusters 1475
Selecting Optimal Combination Therapies 1476
Clinical Databases 1477

Simple Scoring Functions 1477

Look-ahead Techniques 1478

Rules-based Approaches 1479

Host Genetic Profiles and Viral Evolution 1480
Immunobiological Background 1480

HLA Genes 1480

Chemokine Receptors 1482

Epitope Prediction 1483

Problem Definition 1483

Methods 1484

Contents

XIX



XX

Contents

6.3
7
8
8.1
8.2

8.3
8.4

1

1.1
1.2
1.3

21
2.2
2.3
24

4.1

5.1
5.2

Part 10

42

21
2.1.1
2.1.2
2.2

Analysis of Escape Mutations 1485

Conclusions 1488

Web resources 1488

Los Alamos HIV Databases (http:/ /www.hiv.lanl.gov) 1488
Stanford HIV Drug Resistance Database

(http:/ /hivdb.stanford.edu) 1488

Geno2pheno (http:/ /www.geno2pheno.org) 1489

IMGT/HLA Databases (http:/ /www.ebi.ac.uk/imgt/hla) 1489
References 1489

Analyzing the Evolution of Infectious Bacteria 1497

Dawn Field, Edward ]. Feil, Gareth Wilson and Paul Swift
Introduction 1497

Introduction to Molecular Evolutionary Theory 1498

The Quantity and Quality of Data Available 1501

A Practical Overview of Online Resources 1502
Identification and Study of Determinants of Virulence and
Pathogenicity 1504

Homology-based Detection 1506

Pattern-based Detection 1506

Comparative Genomic Methods of Detection 1507
Taxonomically Restricted Genes (TRGs) and Orphans 1508
Putting Isolates of Infectious Bacteria into a Phylogenetic
Framework 1509

Mixing of Genetic Material among Bacteria 1512

The Importance of Phage and Plasmids 1513
Coevolution of Infectious Bacteria with Their Hosts 1516
Reconstructing Metabolic Pathways 1516

The Genetic Arms Race between Pathogen and Host 1517
Conclusions 1518

References 1520

Basic Bioinformatics Technologies 1525

Integrating Biological Databases 1525

Z0é Lacroix, Bertram Ludischer and Robert Stevens
Biological Resources 1525

Data Modeling 1527

Conceptual Model 1528

ER 1528

Unified Modeling Language 1530

“Flat” Data Models 1532



2.3
24
2.5

3.1
3.2
3.3
34

4.1
4.2
4.3
44
4.5

5.1
5.2
5.3
5.3.1
5.3.2
5.3.3
534
5.4

6.1
6.2
6.3

43

2.1.1
2.1.2
213
214
215
2.1.6

Tree-structured Representations 1533

Graph Representations 1534

Multi-dimensional Data Model 1536

Data Integration 1537

Scientific View of Data 1537

Data Warehouse 1540

Link-driven Federations 1541

Mediations 1541

Integrating Applications and Data 1542

Middleware 1543

CORBA 1544

Web Services 1545

P2P 1546

Grid 1547

Semantic Integration 1547

Identifying Objects 1549

Representing Metadata 1550

Ontologies and Data Integration 1552

Example 1553

From Information to Reasoning 1554

Biological Ontologies 1555

Ontologies and Data Integration 1556

Semantic Web 1557

Scientific Workflows 1558

Example: Promoter Identification Workflow (PIW) 1559
Scientific Workflow Requirements and Desiderata 1561
Semantic Extensions and Scientific Workflow Design 1565
Conclusion 1567

References 1567

Visualization of Biological Data 1573

Harry Hochheiser, Kevin W. Eliceiri and Ilya G. Goldberg
Introduction 1573

Microscopy Image Visualization 1574

Fluorescence Microscopy Techniques Applicable to HCS
Screening 1574

Spectral Imaging 1575

Lifetime Imaging 1575

Fluorescence Resonant Energy Transfer (FRET) 1576
Optical Sectioning 1577

MP Imaging 1578

Second Harmonic Imaging 1579

Contents

XXI



XXl

Contents

2.2
221
222
2.3

231
2.3.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
44
4.5
4.6

44

521
522
5.3
54

Functional Genomics 1580

RNAi 1580

Chemical Compound Libraries 1581

Tools for Scientist-driven Analysis Development and
Deployment 1582

Image] 1582

VisBio 1583

Biological Information Visualization 1585
Genome and Sequence Data 1586

Gene Expression Data 1594

Proteomics 1601

Interaction Networks and Pathways 1601
Phylogenies and Taxonomies 1605
Phenotypes and Lineages 1607
Visualization of the Scientific Process 1608
Image Informatics 1608

Data and Information Management 1611
Image Analysis 1611

Analysis Workflows 1613

Provenance 1613

Federation 1614

Visualization and User Tools 1614
Conclusion: Research Questions and Challenges 1614
References 1616

Using Distributed Data and Tools in Bioinformatics
Applications 1627

Robert Stevens, Phillip Lord and Duncan Hull
Introduction to Distributed Resources 1627
Heterogeneiety in Bioinformatics Resources 1629
Type Systems in Bioinformatics 1631

Plumbing Bioinformatics Resources 1634
CORBA 1635

XML in Bioinformatics 1638

Web Services 1640

Case Studies in Distributed Bioinformatics 1642
ISYS 1642

BioMOBY 1643

MOBY-S 1643

S-MOBY 1644

The Grid Future — the "YGrid Project 1644

The ™YGrid Project 1645



Part 11

45

Contents

Discussion 1647
References 1649

Outlook 1651

Future Trends 1651

Thomas Lengauer

Introduction 1651

Building Blocks — Post-translational Modification of Proteins 1653
Regulation — Synthesis and Degradation Pipeline of RNA and
Proteins 1655

Regulation - RNAi 1656

Regulation — Tiling Arrays, ChIP-on-chip and array-CGH 1657
Regulation — Epigenetics 1659

Protein Function — Alternative Splicing 1663

Interaction Networks — Immunoinformatics 1665

Cell Engineering — Synthetic Biology 1670

Genetic Engineering 1671

Protein Engineering 1672

Genetic Networks 1672

Imaging 1673

Obtaining Pictures of Cellular Structures 1673

Movies of Cellular Processes 1675

Organism Development 1676

Modeling Organs 1676

Outlook 1677

References 1678

Index 1687

Name Index 1727

XX



Preface

This book is a substantially expanded sequel to the book Bioinformatics —
From Genomes to Drugs that appeared in 2002. Since the publication of the
predecessor book the field of bioinformatics has experienced continuing and
substantially accelerated growth in terms of the volume and diversity of avail-
able molecular data, as well as the development of methods for analyzing and
interpreting these data. This book is a reflection of the dynamic maturation
of the field. Like its predecessor, it discusses bioinformatics in the context
of pharmaceutical and medical challenges pertaining to the understanding,
diagnosis and therapy of diseases. The previous book covered bioinformatics
issues accompanying the stages from the collection of genomic data across
the elucidation of the molecular basis of disease and the identification of
target proteins for drug design to the search for leads for potential drugs.
This book extends this schema in various ways. First, the process line from
genome to drug is extended downstream towards the optimization of drug
leads and further towards the personalization of drug therapies, which is also
beginning to be supported with bioinformatics methods. Second, the book
covers the field in substantially more breadth. The different types of available
data are discussed more comprehensively and in more detail. On the sequence
side, two chapters on RNA have been added. The bioinformatics analysis of
evolutionary relationships is addressed in several chapters. The discussion of
protein structure has been significantly expanded. There are new sections on
molecular networks, mRNA expression data and protein function, covering
several chapters each. The disease-specific part of the book has also been
expanded, including discussions of bacterial and viral infections. Finally,
several chapters on informatics technologies employed for bioinformatics are
included.

Bioinformatics is continuing to present one of the grand challenges of our
times. It has a large basic research aspect, since we cannot claim to be close to
understanding biological systems on an organism or even cellular level. At the
same time, the field is faced with a strong demand for immediate solutions,
because the genomic and postgenomic data that are being collected harbor
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Preface

many biological insights whose deciphering can be the basis for dramatic
scientific and economical success, and is promising to have large impact on
society.

The book is directed at readers who are interested in how bioinformatics can
spur biological and medical innovation towards understanding, diagnosing
and curing diseases. The book is designed to be useful to readers with a va-
riety of backgrounds. Biologists, biochemists, pharmacologists, pharmacists
and medical doctors can get an introduction into basic and practical issues
of the computer-based part of handling and interpreting genomic, postge-
nomic and clinical data. In particular, many chapters point to bioinformatics
software and data resources which are available on the Internet (often at no
cost), and make an attempt at classifying and comparing those resources. For
computer scientists and mathematicians, the book contains an introduction
to the biological background and the necessary information in order to begin
appreciating the difficulties and wonders of modeling complex biochemical
and biomolecular issues by computer. Since the book caters to a readership
with widely varying backgrounds, it also contains chapters with a diverse
makeup. There are chapters that put the biology in the foreground and only
sketch methodical issues, and a smaller number of chapters in which the
algorithmic and statistical content dominates. By and large, the way in which
the chapters are written reflects the viewpoint from which the authors, and
that also often means the world-wide research community, approaches the
respective topic.

The book contains a name and a subject index. A methodical index is
integrated inside the subject index and points to those sections that present
the master introductions to the quoted computational methods.

The world’s leading experts have contributed their expertise and written
largely autonomous chapters on the specific topics of this book. In order to
render added coherence to the book, the chapters contain a large number of
cross-references to aid in relating the topics of different chapters to each other.
In a few cases, overlap between the chapters has been allowed to ensure the
independent readability of the chapters.

I am grateful to the many people who helped make this book possible.
Above all, I thank the 91 authors of contributed chapters who have shown
extraordinary commitment during the draft and revision stages of their text.
Ruth Christmann spent many hours helping me to master the logistic feat of
collecting the texts, encouraging authors to keep to their commitments, han-
dling versions and completing revisions with a special focus on reference lists.
Joachim Biich kept the website for book authors alive and well maintained
during the preparation and production process. Ray Loughlin did a superb
job on copy-editing the book. Frank Weinreich and later Steffen Pauly were
always responsive partners on the side of the publisher. Finally, I would like
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to express my deep gratitude to my wife Sybille and my children Sara and
Nico who had to cope with my physical or mental absence too much while
the project was ongoing. They gave the most for receiving the least.

Saarbriicken Thomas Lengauer
October 2006
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Part 1 Introduction
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Bioinformatics - From Genomes to Therapies
Thomas Lengauer

1 Introduction

In order to set the stage for this book, this chapter provides an introduction
to the molecular basis of disease. We then continue to discuss modern bio-
logical techniques with which we have recently been empowered to screen
for molecular drugs targets as well as for the drugs themselves. The chapter
finishes with an overview of the organization of the book.

2 The Molecular Basis of Disease

Diagnosing and curing diseases has always been and will continue to be an
art. The reason is that man is a complex being with numerous facets, many of
which we do not and probably will never understand. Diagnosing and curing
diseases has many aspects, include biochemical, physiological, psychological,
sociological and spiritual aspects.

Molecular medicine reduces this variety to the molecular aspect. Living
organisms, in general, and humans, in particular, are regarded as complex
networks of molecular interactions that fuel the processes of life. This “molec-
ular circuitry” has intended modes of operation that correspond to healthy
states of the organism and aberrant modes of operation that correspond to
diseased states. The main goal of molecular medicine is the identification of
the molecular basis of a disease, i.e. to answer the question: “What goes wrong
in the molecular circuitry?”. The goal of therapy is to guide the biochemical
circuitry back to a healthy state. The molecular approach has already proven
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its effectiveness for understanding diseases, and is dramatically enhanced by
genomics and proteomics technology [5]. It is the prime purpose of this book
to explore the contributions that this technology, particularly its computa-
tional aspect, can have to advancing molecular medicine.

As already noted, the molecular basis of life is composed of complex bio-
chemical processes that constantly produce and recycle molecules, and do so
in a highly coordinated and balanced fashion. The underlying basic principles
are quite alike throughout all kingdoms of life, even though the processes
are much more complex in highly developed animals and the human than in
bacteria, for instance. Figure 1 gives an abstract view of such an underlying
biochemical network, the metabolic network of a bacterial cell (the intestinal
bacterium Escherichia coli) — it affords an incomplete and highly simplified
account of the cell’s metabolism, but it nicely visualizes the view of a living
cell as a biochemical circuit. The figure has the mathematical structure of a
graph. Each dot (node) stands of a small organic molecule that is metabolized
within the cell. Alcohol, glucose and ATP are examples for such molecules.
Each line (edge) indicates a chemical reaction. The two nodes connected by
the edge represent the substrate and the product of the reaction. The colors
represent the role that the respective reaction plays in metabolism. These roles
include the construction of molecular components that are essential for life
— nucleotides (red), amino acids (orange), carbohydrates (blue), lipids (light
blue), etc. — or the breakdown of molecules that are not helpful or even
harmful to the cell. Other tasks of chemical reactions in a metabolic network
pertain to the storage and conversion of energy. (The blue cycle in the center
of Figure 1 is the citric acid cycle.) A third class of reactions facilitates the
exchange of information in the cell or between cells. This includes the control
of when and in what way genes are expressed (gene regulation), as well as such
tasks as the opening and closing of molecular channels on the cell surface, and
the activation or deactivation of cell processes such as replication or apoptosis
(programmed cell death). The reactions that regulate cellular processes are
often collectively called the requlatory network. Recently, molecular networks
that facilitate the propagation of signals within the cell are being selectively
called signal transduction networks. Figure 1 only includes metabolic reactions,
without any regulatory reactions or signal transduction cascades. Of course,
all molecular networks of a cell are closely intertwined and many reactions
can have metabolic as well as regulatory aspects. In general, much more is
known about metabolic than regulatory networks, even though many relevant
diseases involve regulatory rather than metabolic dysfunction.

The metabolic and regulatory networks can be considered as composed of
partial networks that we call pathways. Pathways can fold in on themselves,
in which case we call them cycles. A metabolic pathway is a group of reactions
that turns a substrate into a product over several steps (pathway) or recycles
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Figure 1 Abstract view of part of the metabolic network of the
bacterium E. coli (from http://www.genome.ad.jp/kegg/kegg.html).

a molecule by reproducing it in several steps (cycle). The glycolysis pathway
(the sequence of blue vertical lines in the center of Figure 1) is an example of
a pathway that decomposes glucose into pyruvate. The citric acid cycle (the

3
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blue cycle directly below the glycolysis pathway in Figure 1) is an example
of a cycle that produces ATP — the universal molecule for energy transport.
Metabolic cycles are essential in order that the processes of life do not accu-
mulate waste or deplete resources. (Nature is much better at recycling than
man.)

There are several ways in which Figure 1 hides important details of the
actual metabolic pathway. In order to discuss this issue, we have extracted
a metabolic cycle from Figure 1 (see Figure 2). This cycle contributes to cell
replication; more precisely, ;t is one of the motors that drive the synthesis
of thymine — a molecular component of DNA. In Figure 2, the nodes of the
metabolic cycle are labeled with the respective organic molecules and the
edges point in the direction from the substrate of the reaction to the prod-
uct. Metabolic reactions can take place spontaneously under physiological
conditions (in aqueous solution, under room temperature and neutral pH).
However, nature has equipped each reaction (each line in Figure 1) with
a specific molecule that catalyzes that reaction. This molecule is called an
enzyme and, most often, it is a protein. An enzyme has a tailor-made binding
site for the transition state of the catalyzed chemical reaction. Thus, the
enzyme speeds up the rate of that reaction tremendously, by rates of as much
as 107. Furthermore, the rate of a reaction that is catalyzed by an enzyme can
be regulated by controlling the effectiveness of the enzyme or the number of
enzyme molecules that are available.

How does the enzyme do its formidable task? As an example, consider
the reaction in Figure 2 that turns dihydrofolate (DHF) into tetrahydrofolate
(THF). This reaction is catalyzed by an enzyme called dihydrofolate reductase
(DHFR). The surface of this protein is depicted in Figure 3. One immediately
recognizes a large and deep pocket that is colored blue (representing its
negative charge). This pocket is a binding pocket or binding site of the enzyme,
and it is ideally adapted in terms of geometry and chemistry so as to bind to
the substrate molecule DHF and present it in a conformation that is conducive
for the desired chemical reaction to take place. In this case, this pocket is also

Figure 2 A specific metabolic cycle.
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Figure 3 The 3-D structure of Figure 4 DHFR (gray) complexed
DHFR colored by its surface with DHF (green) and NADPH
potential. Positive values are (red).

depicted in red, negative values

in blue.

where the reaction is catalyzed. We call this place the active site. (There can be
other binding pockets in a protein that are far removed from the active site.)
There is another aspect of metabolic reactions that is not depicted in Figure 1
—many reactions involve cofactors. A cofactor is an organic molecule or a metal
ion that has to be present in order for the reaction to take place. If the cofactor
is itself modified during the reaction, we call it a cosubstrate. In the case of
our example reaction, we need the cosubstrate NADPH for the reaction to
happen. The reaction modifies DHF to THF and NADPH to NADP*. Figure 4
shows the molecular complex of DHFR, DHF and NADPH before the reaction
happens. After the reaction has been completed, both organic molecules
dissociate from DHFR and the original state of the enzyme is recovered.
Now that we have discussed some of the details of metabolic reactions, let
us move back to the global view of Figure 1. We have seen that each of the
edges in Figure 1 represents a reaction that is catalyzed by a specific protein.
(However, the same protein can catalyze several reactions.) In E. coli there
are an estimated 1500 enzymes [6]; in human there are thought to be about
least twice as many. The molecular basis of a disease lies in modifications of
the action of these biochemical pathways. Some reactions do not happen at
their intended rate (e.g. in gout), resources that are needed are not present
in sufficient amounts (vitamin deficiencies) or waste products accumulate in
the body (Alzheimer’s disease). In general, imbalances induced in one part
of the network spread to other parts. The aim of therapy is to replace the
aberrant processes with those that restore a healthy state. The most desirable
fashion in which this could be done would be to control the effectiveness of
a whole set of enzymes in order to regain the metabolic balance. This set
probably involves many, many proteins, as we can expect many proteins to
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be involved in manifesting the disease. Also, each of these proteins would
have to be regulated in quite a specific manner. The effectiveness of some
proteins would possibly have to be increased dramatically, whereas other
proteins would have to be blocked entirely, etc. It is obvious that this kind
of therapy involves a kind of global knowledge of the workings of the cell
and a refined pharmaceutical technology that is far beyond what man can do
today and for some time to come.

3 The Molecular Approach to Curing Diseases

For this reason, the approach of today’s pharmaceutical research is far more
simplistic. The aim is to regulate a single protein. In some cases we aim at
completely blocking an enzyme. To this end, we can provide a drug molecule
that effectively competes with the natural substrate of the enzyme. The drug
molecule, the so-called inhibitor, has to be made up such that it binds more
strongly to the protein than the substrate. Then, the binding pockets of
most enzyme molecules will contain drug molecules and cannot catalyze the
desired reaction in the substrate. In some cases, the drug molecule even binds
very tightly (covalently) to the enzyme (suicide inhibitor). This bond persists
for the remaining lifetime of the protein molecule. Eventually, the deactivated
protein molecule is broken down by the cell and a new identical enzyme
molecule takes its place. Aspirin is an example of a suicide inhibitor. The effect
of the drug persists until the drug molecules themselves are removed from the
cell by its metabolic processes and no new drug molecules are administered
to replace them. Thus, one can control the effect of the drug by the time and
dose it is administered.

There are several potent inhibitors of DHFR. One of them is methotrexate
(MTX). Figure 5 shows MTX (color) both unbound (left) and bound (right) to
DHEFR (gray). MTX has been administered as an effective cytostatic cancer
drug for over two decades.

There are many other ways of influencing the activity of a protein by
providing a drug that binds to it. Drugs interact with all kinds of proteins:

e With receptor molecules that are located in the cell membrane and fulfill
regulatory or signal transduction tasks.

e With ion channels and transporter systems (again protein residing in the
cell membrane) that monitor the flux of molecules into and out of the cell.

The mode of interaction between drug and protein does not always have the
effect of blocking the protein. In some cases, the drug mimics a missing small
molecule that is supposed to activate a protein. We call such drugs agonists.
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(a) (b)
Figure 5 MTX (colored by its surface potential, see Figure 3):
(a) unbound, (b) bound to DHFR (gray).

In general, we are looking for drugs that bind tightly to their protein target
(effectiveness) and to no other proteins (selectivity).

Most drugs that are on the market today modify the enzymatic or regulatory
action of a protein by strongly binding to it as described above. Among these
drugs are long-standing, widespread and highly popular medications, and
more modern drugs against diseases such as AIDS, depression or cancer. Even
the lifestyle drugs that have come into use in recent years, e.g. Viagra and
Xenical, belong to the class of protein inhibitors.

In this view, the quest for a molecular therapy of a disease decomposes into
three parts:

o Question 1: Which protein should we target? As we have seen, there are many
thousands of candidate proteins in the human. We are looking for one that,
by binding the drug molecule, provides the most effective remedy of the
disease. This protein is called the target protein.

o Question 2: Which drug molecules should be used to bind to the target pro-
tein? Here, the molecular variety is even larger. Large pharmaceutical
companies have compound archives with millions of compounds at their
disposal. Every new target protein raises the question of which of all of
these compounds would be the best drug candidate. Nature uses billions
of molecules. With the new technology of combinatorial chemistry, where
compounds can be synthesized systematically from a limited set of b uilding
blocks, this number of potential drug candidates is also becoming accessible
to the laboratory.

o Question 3: Given a choice of different drugs to administer to a patient, in order to
alleviate or cure a specific disease, what is the best selection of drugs to give to that
individual patient? Questions 1 and 2 have been posed without the specifics
of an individual patient in mind. Target protein and drug were selected

7
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for all putative patients collectively. With Question 3 we are entering the
more advanced stage of personalized medicine — we want to understand the
different ways in which different patients react to the same drug.

Question 3 has only come into the focus of research recently. The inclusion of
the discussion of this question presents a major new feature of this book over
its predecessor.

We will now give a short summary of the history of research on all three
questions.

4 Finding Protein Targets

Let us start our discussion of the search for target proteins by continuing our
molecular example of DHFR/MTX. As mentioned, DHFR catalyzes a reaction
that is required for the production of thymine — a component of DNA. Thus,
blocking DHFR impairs DNA synthesis and, therefore, cell division. This is
the reason that MTX, an inhibitor of DHFR, is administered as a cytostatic
drug against cancer. Is DHFR the “right” target protein in this context? The
frank answer to this question must be “no”. DHFR is active in every dividing
cell, tumor cells as well as healthy cells. Therefore, MTX impairs the division
of all dividing cells that it can get to. This is the cause of the serious side-
effects of the drug such as loss of hair and intestinal lining. We see that in this
case the limits of the therapy are mostly dictated by the choice of the wrong
target protein. Why then is this protein chosen as a target? The answer to this
question is also very simple: we cannot find a better one. This example shows
how central the search for suitable target proteins is for developing effective
drug therapies.

Target proteins could not really realistically be searched for until a few
years ago. Historically, few target proteins were known at the time that the
respective drug had been discovered. The reason is that new drugs were
developed by modifying natural metabolites or known drugs, based on some
intuitive notion of molecular similarity. Each modification was immediately
tested in the laboratory either in vitro or in vivo. Thus, the effectiveness of the
drug could be assessed without even considering the target protein. To this
day, all drugs that are on the marketplace worldwide target an estimated set
of not much more than 500 proteins [3]. Thus, the search for target proteins is
definitely the dominant bottleneck of current pharmaceutical research.

Today, new experimental methods of molecular biology, the first versions of
which were developed just a few years ago, provide us with a fundamentally
new way — the first systematic way — of looking for protein targets. The
basis for all of these methods was the technological progress made in the
context of the quest for sequencing the human genome [1]. Based on this
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Figure 6 A DNA chip (from
http://cmgm.stanford.edu/pbrown/explore/).

technology, additional developments have been undertaken to be able to
measure the amount of expressed genes and proteins in cells. We exemplify
this progress using a specific DNA chip technology [2]; however, the general
picture extends to many other experimental methods under development.

Figure 6 shows a DNA chip that provides us with a differential census of
the gene expressed by a yeast cell in two different cell states — one governed
by the presence of glucose (green) and one by the absence of glucose (red). In
effect the red picture is that of a starving yeast cell, whereas the green picture
shows the “healthy” state. Each bright green dot indicates a protein that is
manufactured (expressed) in high numbers in the “healthy” state. Each bright
red dot indicates a protein that is expressed in high numbers in the starving
cell. If the protein occurs frequently in both the healthy and the starving state,
the corresponding dot is bright yellow (resulting from an additive mixture of
the colors green and red). Dark dots indicate proteins that are not frequent,
the tint of the color again signifies whether the protein occurs more often in
the healthy cell (green), equally often in both cells (yellow) or more often in
the diseased cell (red).

At this point, the exactly nature of the experimental procedures that gener-
ate the picture in Figure 6 is of secondary importance. What is important is
how much information is attached to the colored dots in the picture. Here, we
can make the following general statements.
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(i) The identity of the protein is determined by the coordinates of the colored
dot. We will assume, for simplicity, that dots at different locations also
represent different proteins. (In reality, multiple dots that represent the
same protein are introduced, on purpose, for the sake of calibration.) The
exact arrangement of the dots is determined before the chip is manufac-
tured. This involves identifying a number of proteins to be represented on
the chip and laying them out on the chip surface. This layout is governed
by boundary conditions and preferences of the experimental procedures,
and is not important for the interpretation of the information

(ii) Only rudimentary information is attached to each dot. At best, the exper-
iment reveals the complete sequence of the gene or protein. Sometimes,
only short segments of the relevant sequence are available.

Given this general picture, the new technologies of molecular biology can be
classified according to two criteria, as shown in the following two subsections.

4.1 Genomics versus Proteomics

In genomics, it is not the proteins themselves that are monitored, but rather
we screen the expressed genes whose translation ultimately yields the re-
spective proteins. In proteomics, the synthesized proteins themselves are
monitored. The chip in Figure 6 is a DNA chip, i.e. it contains information on
the expressed genes and, thus, only indirectly on the final protein products.
The advantage of the genomics approach is that genes are more accessible
experimentally and easier to handle than proteins. For this reason, genomics
is ahead of proteomics, today. However, there also are disadvantages to ge-
nomics. First, the expression level of a gene need not be closely correlated with
the concentration of the respective protein in the cell, although the latter figure
may be more important to us if we want to elicit a causal connection between
protein expression and disease processes. Even more important, proteins
are modified post-translationally (i.e. after they are manufactured). These
modifications involve glycosylation (attaching complex sugar molecules to
the protein surface) and phosphorylation (attaching phosphates to the protein
surface), for instance, and they lead to many versions of protein molecules
with the same amino acid sequence. Genomics cannot monitor these modifica-
tions, which are essential for many diseases. Therefore, it can be expected that,
as the experimental technology matures, proteomics will gain importance
over genomics (see also Chapter 45).
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4.2 Extent of Information Available on the Genes/Proteins

Technologies vary widely in this respect. The chip in Figure 6 is generated
by a technology that identifies (parts of) the gene sequence. We are missing
information on the structure and the function of the protein, its molecular in-
teraction partners, and its location inside the metabolic or regulatory network
of the organism. All of this information is missing for the majority of the genes
on the chip.

There are many variations on the DNA chip theme. There are technologies
based on so-called expressed sequence tags (ESTs) that tend to provide more
inaccurate information on expression levels and various sorts of microarray
techniques (see Chapter 24). All technologies have in common that the data
they produce require careful quality control (Chapter 25). In general, it is sim-
pler to distinguish different disease states from gene expression data (Chap-
ter 26) than to learn about the function of the involved proteins from these
data (Chapter 27). Proteomics uses different kinds of separation techniques,
e.g. chromatography or electrophoresis combined with mass spectrometry,
to analyze the separated molecular fractions (see Chapter 28). As is the
case with genomics, proteomics technologies tend to generate information on
the sequences of the involved proteins and on their molecular weight, and
possibly information on post-translational modifications such as glycosylation
and phosphorylation. Again, all higher-order information on protein function
is missing. It is not feasible to generate this information exclusively in the
wet laboratory — we need bioinformatics to make educated guesses here.
Furthermore, basically all facets of bioinformatics that start with an assembled
sequence can be of help. This includes the comparative analysis of genes and
proteins (Chapter 37), protein structure prediction (Chapters 9-13), protein
function prediction (Chapters 30-34), analysis and prediction of molecular
interactions involving proteins (Chapters 16 and 17) as well as bioinformatics
for analyzing metabolic and regulatory networks (Chapters 20-22). This is
why all of bioinformatics is relevant for the purpose of this book.

If, with the help of bioinformatics, we can retrieve enough information on
the molecular networks that are relevant for a disease, then we have a chance
of composing a detailed picture of the disease process that can guide us to the
identification of possible target proteins for the development of an effective
drug. Note that the experimental technology described above is universally
applicable. The chip in Figure 6 contains all genes of the (fully sequenced)
organism Saccharomyces cerevisiae (yeast). The cell transition analyzed here
is the diauxic shift — the change of metabolism upon removal of glucose.
However, we could exchange this with almost any other cell condition of any
tissue of any conceivable organism. The number of spots that can be put on a
single chip goes into the hundreds of thousands. This is enough to put all of
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the human genes on a single chip. Also, we do not have to restrict ourselves to
disease conditions; all kinds of environmental conditions (temperature, pH,
chemical stress, drug treatment, diverse stimuli, etc.) or intrinsic conditions
(presence or absence of certain genes, mutations, etc.) can be the subject of
study.

The paradigm of searching for target proteins in genomics data has met
with intense excitement from the pharmaceutical industry, which has invested
heavily in this field over recent years. However, the first experiences have
been sobering. It seems that we are further away from harvesting novel
target proteins from genomics and proteomics data than we initially thought.
However, in principle, a suitable novel target protein can afford a completely
new approach to disease therapy and a potentially highly lucrative worldwide
market share. For a critical review of the target-based drug development
process, see Sams-Dodd [7].

Providing adequate bioinformatics support for finding new target proteins
is a formidable challenge that is the focus of much of this book. However,
once we have a target protein, our job is not done.

5 Developing Drugs

If the target protein has been selected, we are looking for a molecule that
binds tightly to the relevant binding site of the protein. Nature often uses
macromolecules, such as proteins or peptides, to inhibit other proteins. How-
ever, proteins do not make good drugs — they are easily broken down by the
digestive system, they can elicit immune reactions and they cannot be stored
for a long period of time. Thus, after an initial excursion into drug design
based on proteins, pharmaceutical research has basically gone back to looking
for small drug molecules. Here, one idea is to use a peptide as the template
for an appropriate drug (peptidomimetics).

Due to the lack of fundamental knowledge of the biological processes in-
volved, the search for drugs was, until recently, governed by chance. How-
ever, as long as chemists have thought in terms of chemical formulae, pharma-
ceutical research has attempted to optimize drug molecules based on chemical
intuition and on the concept of molecular similarity. The basis for this ap-
proach is the lock-and-key principle formulated by Emil Fischer [4] over 100
years ago. Figures 3 to 5 illustrate that principle: in order to bind tightly, the
two binding molecules have to be complementary to each other both sterically
and chemically (colors in Figures 3 and 5). The drug molecule fits into the
binding pocket of the protein like a key inside a lock. The lock-and-key
principle has been the dominating paradigm in drug research ever since its
proposal. It has been refined to include the phenomenon of induced fit, by
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which the binding pocket of the protein undergoes subtle steric changes in
order to adapt to the geometry of the drug molecule.

For most of the past century the structure of protein-binding pockets has
not been available to the medicinal chemist. Even to this day the structure
of the target protein will not be known for many pharmaceutical projects for
some time to come. For instance, many diseases involve target proteins that
reside in the cell membrane and we cannot expect the three-dimensional (3-D)
structure of such proteins to become known soon. If we have no information
on the structure of the protein-binding site, drug design is based on the idea
that molecules that are similar in terms of composition, shape and chemical
features should bind to the target protein with comparable strength. The re-
spective drug-screening procedures are based on comparing drug molecules,
either intuitively or, more recently, systematically with the computer. The
resulting search algorithms are very efficient and allow searching through
compound libraries with millions of entries (Chapter 18).

As 3-D protein structures became available, the so-called rational or structure-
based approach to drug development was invented, which exploited this
information to develop effective drugs. Rational drug design is a highly in-
teractive process with the computer originally mostly visualizing the protein
structure and allowing queries on its chemical features. The medicinal chemist
interactively modified drug molecules inside the binding pocket of the protein
at the computer screen. As rational drug design began to involve more
systematic optimization procedures interest arose in molecular docking, i.e.
the prediction of the structure and binding affinity of the molecular complex
involving a structurally resolved protein and its binding partner (Chapter 16).
Synthesizing and testing a drug in the laboratory used to be comparatively
expensive. Thus, it was of interest to have the computer suggest a small set
of highly promising drug candidates. After an initial lead molecule has been
found that binds tightly to the target protein, secondary drug properties have
to be optimized that maximize the effectiveness of the drug and minimize
side-effects (Chapter 19).

With the advent of high-throughput screening the binding affinity of as many
as several hundred thousands drug candidates to the target protein can now
be assayed within a day. Furthermore, combinatorial chemistry allows for the
systematic synthesis of molecules that are composed of preselected molecular
groups that are linked with preselected chemical reactions. The number of
molecules that is accessible in such a combinatorial library can, in principle,
exceed many billions. Thus, we need the computer to suggest promising
sublibraries that promise to contain a large number of compounds that bind
tightly to the protein (Chapters 16 and 18).

As in the case of target finding, the new experimental technologies in drug
design require new computer methods for screening and interpreting the
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voluminous data assembled by the experiment. These methods are seldom
considered part of bioinformatics, since the biological object, i.e. the target
protein, is not the focus of the investigation. Rather, people speak of chemin-
formatics — the computer aspect of medicinal chemistry. Whatever the name,
it is our conviction that both aspects of the process that guides us from the
genome to the drug have to be considered together and we will do so in this
book.

6 Optimizing Therapies

How is it that different patients react differently to the same drug? Reasons for
this phenomenon can be manifold. Some are easier to investigate with meth-
ods of modern biology and bioinformatics than others. Here, we distinguish
between infectious diseases and other diseases.

The molecular basis of any infectious disease is the interplay of a usually
large population of a pathogen with the human host. The pathogen takes
advantage of the human host or, in the case of virus, even hijacks the infected
cells of the patient. Chapter 23 relates a story about the interplay of a viral
pathogen with the infected host cell.

With infectious diseases, the drug often targets proteins of the infecting
pathogen rather than the human host. The reason is the hope that drugs
for such targets harbor less serious side-effects for the patient. However, in
all infectious diseases, there is a constant battle going on between the host,
whose immune system tries to eradicate the pathogen, and the pathogen that
tries to evade the immune system. If the disease is treated with drugs, the
administered drugs impose an additional selective pressure on the pathogen.
On the road to resistance the pathogen constantly changes its genome and,
thus, also the shape of the target proteins for drug therapy. Changes that
are beneficial for the pathogen are those that render the drugs less effective,
i.e. the pathogen becomes resistant. The results of this process are widely
known. With bacteria, we observe increasingly resistant strains against antibi-
otic therapies (Chapter 41). With viral diseases such as AIDS the drug therapy
has to be adapted continually to newly developing resistant strains within
the patient (Chapter 40). Therapy selection must be individualized, in both
cases, at least by taking the present strain of the pathogen into account and,
at best, by also considering the individual characteristics of the host. Since
the pathogen is a much simpler organism than the human host, the former is
significantly easier than the latter.

Although the drug acts on its intended protein target, the drug has to
find its way to the site of action and, eventually, has to be metabolized or
excreted again. Along that path there are multiple ways in which the drug can
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interact with the patient. The resulting side-effects depend on the molecular
and genetic status of the individual patient. Furthermore, the protein target
often has different functions, such that its inhibition or agonistic activation
can incur side-effects on molecular processes that were not intended to be
changed. Again, the form and magnitude of such side-effects depends on
the individual patient. This process of bringing about different reactions to
drugs in different patient is much harder to analyze. The reason is that larger,
often widespread, networks of interactions in the patient have to be taken
in account. Analyzing them necessitates complex and accurately assembled
patient histories and diverse molecular data that are seldom collected in
today’s clinical practice. Therefore, this approach to personalized medicine
is still in its infancy (Chapter 39).

Another issue with diseases is the genetic predisposition of the human indi-
vidual to the disease. Monogenetic diseases have been known for a long time
and are relatively easy to analyze. Here, a defect in a single gene gives rise to
the disease. However, these diseases are rare, in general. The major diseases
like cancer, diabetes, and inflammatory and neurodegenerative diseases are
based on a complex interplay between environmental and genetic factors
with probably many genes involved. With data on the genomic differences
between individuals just coming into being, the analysis of the genetic basis
for complex diseases is embarking on a route that hopefully will lead to more
effective means of prognosis, diagnosis and therapy.

7 Organization of the Book

This book is composed of three volumes. It is organized along the line from
the genotype to the phenotype.

Volume 1: The building blocks: sequences and structures. This volume discusses
the analysis of the basic building blocks of life, such as genes and proteins.

Volume 2: Getting at the inner workings: molecular interactions. This volume
concentrates on the “switches” of the biochemical circuitry, the molecu-
lar interactions, as well as the circuits composed by these switches, the
biochemical networks. In the former context, it partly also ventures into
applied issues of drug design and optimization.

Volume 3: The Holy Grail: molecular function. This volume ties the elements
provided by the first two volumes together and attempts to draw an inte-
grated picture of molecular function — as far as we can do it today. The
volume also discusses ramifications of this picture for the development and
administration of drug therapies.
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Each volume is subdivided in parts that are summarized below. The total
book has 11 parts. Volume 1 covers Parts 1-4.

Part 1 consists only of this chapter, and gives an introduction to the field
and an overview of the book.

Part 2, consisting of Chapter 2, discusses bioinformatics support for assem-
bling genome sequences. This is basic technology which is required to arrive
at the genome sequence data that are the basis for much of what follows in
the book. Major advances have been made in this area, especially during the
finishing stages of completing the human genome sequence. The field has
not lost its importance as we are embarking on sequencing many complex
genomes, including over a dozen mammalian genomes. Furthermore, the
technology is employed in projects that sequence closely related species, such
as over a dozen species of Drosophila, in order to obtain a more effective
database for functional genomics!. The authors of the chapter were part of
the team that developed the assembler for the draft of the human genome
sequence generated by Celera Genomics.

Part 3 is on molecular sequence analysis and comprises Chapters 3—8. Chap-
ter 3 introduces the basic statistical and algorithmic technology for aligning
molecular sequences. This technology forms the basis of much that is to
follow. The author of the chapter has made seminal contributions to the field.
Chapter 4 discusses methods for inferring ancestral histories from sequence
data. This is one of the mainstays of comparative genomics. Similar to
people, one can learn a lot about genes and proteins from looking at their
ancestors and relatives, arguably more so with today’s methods than from
inspecting the gene or protein by itself. This attributes particular significance
to this chapter in the context of this book. The authors of the chapter have
made important contributions to the development of methods for inferring
phylogenies and applied them to analyzing the evolution of Homo sapiens.
Chapter 5 discusses the first major step from the genotype to the phenotype,
i.e. the identification of protein-coding genes. The author of the chapter has
developed one of the leading gene-finding programs. The ongoing debate
on exactly what is the number of genes in the human chromosome years
after the first draft of the human genome sequence was available shows
that the issue of this chapter is still quite up-to-date. Furthermore, genes
are a primary unit of linkage between the human genome and disease, as
Chapter 38 discusses. Going into the gene’s structure, most of the linkage
with disease happens not in the coding regions of the genes that affect the
structure of the coded protein. In general, proteins are far too well refined to
be tampered with. Mostly, changing a protein means death to the individual

1) see http://preview.flybase.net/docs/
news/announcements/drosboard /GenomesWP2003.html for
the respective community white paper
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and only a few severe diseases (such as sickle cell anemia, Huntington’s
chorea or cystic fibrosis) are linked to changes in the coding regions of genes.
More subtle influences of the genotype on disease involve polymorphisms
in the noncoding regulatory regions of the disease gene that do not affect
the structure of the protein, but the mechanism and level of its expression.
This lends special importance to Chapter 6, which addresses bioinformatics
methods for analyzing these regions. The author of the chapter has led the
development of a widely used set of software tools for analyzing regulatory
regions in genomes. The analysis of regulatory regions ventures into the more
difficult to analyze noncoding regions of genes. However, the really dark
turf of the human genome is presented by the long and mysterious repetitive
sections. Up to 40% of the human genome is covered with these regions
whose relevance (or irrelevance?) is under hot debate, especially since some
of these regions seem to harbor potential silenced retroviral genes that may
become active again at some suitable or unsuitable time. The identification
of these regions (although not the elucidation of their function) is discussed
in Chapter 7. The authors of this chapter have made seminal contributions
and provided widely used software for computational gene finding, genome
alignment and repeat finding. Chapter 8, finally, discussed the algorithmic
and statistical basis of analyzing major genome reorganizations that happened
as the kingdoms of life evolved, and that include splitting, fusing, mixing and
reshuffling at a chromosomal level. Again, we are just beginning to under-
stand the evolutionary role of these transactions. The author of this chapter
has provided important contributions to the methodical and biological side of
the field, many of them together with David Sankoff and Pavel Pevzner.

Part 4 of the book is on molecular structure prediction and comprises Chap-
ters 9-15. The part starts with a chapter on a half-way approach to protein
structure prediction which only aims at identifying the regions of secondary
structure of the protein (o-helices and B-strands) and related variants. The
resulting information on protein structure is very important in its own right
and, in addition, helps guide or verify tertiary structure prediction. The
authors of the chapter have made seminal contributions to protein structure
prediction starting in the early 1990s that increased the prediction accuracy
significantly (from around 65 to well over 70%).

The most promising approach to identifying the fold of a protein, today,
selects a template protein from a database of structurally resolved proteins
and models the structure of the protein under investigation (the target protein)
after that of the template protein with sequence alignment methods. If the se-
quence similarity between the template and the target is high enough (roughly
40% or larger), then this alignment can even serve as a scaffold for providing
a full-atom model of the protein structure. The respective structure prediction
method is called homology-based modeling and is described in Chapter 10.
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The author of this chapter has developed one of the most advanced homology-
based structure prediction tools to date. If the sequence similarity between
the template and target is below 40% then generating full-atom models for the
target using the template structure becomes increasingly difficult and risky.
In such low-sequence-similarity ranges aligning the backbone of the target
protein to that of the template protein becomes the critical issue. If this is
done correctly, one obtains a 3-D model of target backbone that can serve as
an aid for structural classification of the target protein. Chapter 11 describes
this process. The author of Chapter 11 has codeveloped a well-performing
Internet server for this structural alignment task.

Homology-based modeling can only rediscover protein structures since it
models the target on the basis of a known template structure. In de novo struc-
ture prediction, we try to come up with the structure of the protein, even if it
is novel and has never been seen before. This subject is still a major challenge
for the field of computational biology, but significant advances have been
made in the past 10 years by David Baker’s group (University of Washington,
Seattle, WA) and the author of the chapter was one of the major contributors
in this context. Today, there are several projects that aim at resolving protein
structures globally, e.g. over whole proteomes. The approach is a combination
of experimental structure resolution of a select set of proteins that promise to
crystallize easily and fold into new structures, and homology-modeling other
proteins using the thus increased template set. Chapter 13 describes these
structural genomics projects. One author of the chapter codirects the Protein
Data Bank (the main repository for publicly available proteins structures) and
the other directs a major structural genomics initiative.

The last two chapters discuss structure prediction of another important
macromolecule in biology — RNA. In contrast to DNA, which basically folds
into a double-helical structure, RNA is structurally diverse. There is a well-
understood notion of secondary structure in RNA, ie. the scaffold that is
formed by base pairs within the same RNA chain. This algorithmically and
biologically well-developed field is presented in Chapter 14. The authors of
the chapter have contributed a major software package for analyzing RNA
secondary structures. The last chapter in this part looks at tertiary structure
prediction for RNA, a comparatively much less mature field, and its author is
one of the major experts in that field, worldwide.

Volume 2 covers Parts 5-7. Based on the knowledge about molecular build-
ing blocks afforded by Volume 1, Volume 2 ventures into questions of molec-
ular function.

Part 5 starts by considering atomic events in molecular networks, i.e. the
interactions between pair of molecules. Molecular interactions are important
in two ways. First, understanding which molecules bind in an organism,
when and how, is fundamental for understanding of the dynamic basis of life.
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Second, as we have seen in the first parts of this chapter, modifying molecular
interactions in the body with drugs is the main tool for pharmaceutical ther-
apy of diseases. Drugs bind to target proteins. Understanding the interactions
between a drug and its target protein is a prerequisite for rational and effective
drug therapy. Part 5 addresses both these questions. The part comprises
four chapters. Chapter 16 discusses protein-ligand docking, with the implicit
understanding that the ligands of interest are mostly drugs or drug candi-
dates. The chapter discusses how to computationally dock known ligands into
structurally resolved protein-binding sites and also how to computationally
assemble new ligands inside the binding site of a protein. The senior author
is the developer of one of the most widely used protein-ligand docking tools,
worldwide. Chapter 17 discusses molecular docking if both docking partners
are proteins. This problem is of lower pharmaceutical relevance, as most
drugs are small molecules and not proteins, but of high medical relevance,
as the basis of a disease can often be an aberration of protein—protein binding
events. Furthermore, the chapter also discusses protein-DNA docking, which
is at the heart of gene regulation. (Here, the protein is a transcription factor
binding to its site along the regulatory region of a gene, for instance.) The
authors of this chapter have developed advanced software for protein—protein
docking. The last two chapters in this part discuss problems in finding drugs.
As described above, the drug design process is decomposed into a first step,
in which a lead structure is sought, and a second step, in which the lead
is optimized with respect to secondary drug properties. If the binding site
of the target protein is resolved structurally, lead finding can be done by
docking (Chapter 16). Otherwise, one takes a molecule that is known to
bind to the binding site of the target protein as a reference and searches for
similar molecules as drug candidates. Here, the notion of similarity must be
defined suitably such that similar molecules have similar characteristics in
binding to the target protein. Chapter 18 discusses this type of drug screening.
Finally, Chapter 19 addresses the optimization of drug leads. The authors of
Chapter 19 are from the pharmaceutical industry. They are experts in applying
and advancing methods for drug optimization in the pharmaceutical context.

Part 5 has advanced considerably beyond fundamental research questions
and into pharmaceutical practice.

In Part 6 we take a step back towards fundamental research. This part
discusses the biochemical circuitry that is composed of the kind of molecular
interactions that were the subject of Part 5. Understanding these molecular
networks is clearly the hallmark of understanding life’s processes, in general,
and diseases and their therapies, in particular. However, the understanding of
molecular networks is in its infancy, and is not advanced enough, in general,
to be directly applicable to pharmaceutical and medical practice. Still, the
vision is to advance along this line and the four chapters in this part present
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various aspects of this process. Chapter 20 is on metabolic networks, the kind
discussed in a little more detail in the beginning of this chapter. Metabolic
networks are quite homogeneous with respect to the roles of the participating
molecules. In general, we have a substrate that is converted to a product
by a chemical reaction that is catalyzed by an enzyme, possibly with the
aid of a cofactor. This homogeneity makes metabolic networks especially
amenable to theoretical analysis. In addition, much is known about the
topology (connection structure) of metabolic networks. However, we are still
lacking much of the kinetic data needed to accurately simulate the dynamics
of metabolic networks. The chapter presents methods for analyzing networks
both statically and dynamically. The authors are among the main methodical
contributors to the analysis of metabolic networks, worldwide. Chapter 21
analyzes gene regulation networks. These networks are more heterogeneous,
since they incorporate different kinds of interactions — direct interactions,
as when transcription factors bind to the regulatory regions of genes, and
indirect interactions, as when transcription factors regulate the expression of
genes that code for other transcription factors. Furthermore, proteins, as well
as DNA and RNA, are involved in gene regulation. Inferring gene regulation
networks necessitates much genomic information which is just on the verge
of becoming available and, thus, the field is less mature than the area of
analyzing metabolic networks. The author of Chapter 21 is one of the prime
experts in the field of analyzing gene regulation networks. A very special
type of molecular networks is concerned with transmission of information
inside the cell. Usually, these signaling networks can be analyzed in terms of
smaller modules than regulatory or metabolic networks. The special methods
for analyzing these networks are presented in Chapter 22 by a group of
outstanding experts in the field. Chapter 23 finally moves beyond the single
cell and discusses interactions between a viral pathogen and its infected host
cell — a major step from basic research to its application in a medical setting.
This is a very young field and the author is one of its main proponents.

Part 7 is focused on a special types of experimental data that form the basis
of much research (and debate) today — expression data. We have discussed the
microarray (mRNA) expression data in the chapter above, when we addressed
the quest of finding new target proteins for drug therapy. Expression data
were the first chance to venture beyond the genome, which is the same in
all cells of an organism, and analyze the differences between different cells,
tissues and cell states. Therefore, these data have a special relevance for
advancing molecular medicine and this justifies dedicating a separate part
of the book with five chapters to them. Chapter 24 gives a summary of
the whole field, from the experimental side of the technology of measuring
mRNA expression and its implications on computational analysis methods to
the bioinformatics methods themselves. Since expression data are typically
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quite noisy, with many sources of variance residing both in the technology
(which can be improved, in principle) and the underlying biology (which
can and should not be changed), issues of quality control of the data play
a prominent role in this chapter. The author is a global expert in the field of
analysis of expression data. The following four chapters go into more detail on
computational issues. Chapter 25 presents statistical methods for pretreating
the data so as to arrive at an optimally interpretable dataset and it is written
by a leading group of researchers in the area. The following two chapters
discuss two fundamentally different kinds of analysis of mRNA expression
data. Chapter 26 discusses methods that analyze and group different datasets
(microarrays), generated under different circumstances (e.g. from different
patients or from the same patient at different time points). Such methods
afford the distinction of healthy from sick individuals as well as the analysis of
disease type and disease progression, thus providing effective help in disease
diagnosis. Chapter 27 groups data differently. Here, we are not interested
in distinguishing different experiments, but in understanding the roles of
(groups of) genes in, say, the progression of a disease that has been monitored
with a sequence of microarray experiments. The results of the analysis are
supposed to afford insight into the disease process and clues for drug therapy.
This is a much harder task than just grouping microarray datasets and it has
turned out that it cannot be solved, in general, just on the basis of expression
data. Therefore, this chapter also prepares for later chapters that discuss the
analysis of gene and protein function in a more general context (Part 8). The
authors of Chapters 26 and 27 participate in a joint German national project
that aims both at advancing the methods, and at applying them to biological
and medical datasets. mRNA expression data (so-called transcriptomics data,
because the data assess the expression level of mRNA transcripts of genes)
have the advantage of being generated comparatively easily, due to the ho-
mogeneous structure of DNA (to which the mRNA is backtranscribed before
measuring expression levels). However, these data correlate only weakly
with the expression level of the actual functional unit, i.e. the synthesized
and post-translationally modified protein. Measuring expression directly at
the protein level is a more direct approach, but experimentally significantly
more challenging. Therefore, the state of the field of proteomics, which
analyzes protein expression directly, is behind that of transcriptomics, as
far the experimental side is concerned. Nevertheless, proteomics is rapidly
emerging, with several promising experimental technologies and the respec-
tive computational methods for data assembly /analysis. Chapter 28 presents
the state of this field. It is written by a leading academic group engaged in
software development for the field of proteomics.
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Volume 3 builds on Volumes 1 and 2, and aims at embarking along an
integrated picture of molecular function, and its consequences for the devel-
opment and administration of drug therapies. The volume covers Parts 8-11.

Part 8 comprises eight chapters and is devoted to molecular (mostly protein)
function. We have has already addressed aspects of molecular function (e.g.
the chapters on molecular interactions and molecular networks, as well as the
chapters on expression data), and, along the way, it has become increasingly
evident that molecular function is a colorful term that has many aspects and
whose elucidation relies on many different kinds of experimental data. In
fact, molecular function is such an elusive notion that we dedicate a special
chapter to discussing exactly this term, and the way it is and should be coded
in the computer, respectively. This Chapter 29 is written by two authors
that are main proponents of advancing the state of ontologies for molecular
biology. Then we dedicate four chapters to inferring information on protein
function from different kinds of data: sequence data (Chapter 30), protein
interaction data that are based on special experimental technologies that can
measure whether proteins bind to each other or not, and do so proteome-
wide, in the most advanced instances (Chapter 31), genomic context data,
affording an analysis based on the comparison of genomes of many species
(Chapter 32), and molecular structure data (Chapter 33). Since all of these data
still do not cover protein function adequately, we add another chapter that
addresses methods for inferring aspects of protein function directly from free
text in the scientific literature (Chapter 34). Chapter 35 presents methods for
fusing all the various kinds of information gathered by the methods presented
in the preceding chapters to arrive at a balanced account of the available
knowledge on the function of a given protein. Finally, Chapter 36 discusses
the druggability of targets, i.e. the adequacy of proteins to serve as a target for
drug design. This quality encompasses properties such as a suitable shape of
the binding pocket to suit typical drug molecules and a certain uniqueness of
the shape of the binding pocket, such that drugs that bind to this pocket avoid
binding to other proteins that are not targets for the drug. Again, all of these
chapters are written by outstanding proponents of the respective fields.

With Parts 1-8 we have covered the space from the genotype (the genome
sequence) to the phenotype (the molecular function). However, we can still
take additional steps to making all of this knowledge work in applied medical
settings. This is the topic of Part 9. To this end, Part 9 focuses on the anal-
ysis of relationships and differences between genomes. In the first chapter,
Chapter 37, the topic is rolled up in a general fashion by asking the question:
“What can we learn from analyzing the differences between genomes?”. Then,
we focus on the medically most relevant differences between genomes of
individuals of the same species. Specifically, we are interested in the human
and in pathogens infecting the human. Chapter 38 discusses what we can



References

learn from genetic differences between people about disease susceptibility.
Chapter 39 then addresses the topic of personalized medicine: how can we
learn from suitable molecular and clinical data how a patient reacts to a given
drug treatment? The final two chapters address the evolution of pathogens in
the human host (mostly to become resistant against the host’s immune system
and drug treatment). Chapter 40 discusses viral pathogens, specifically HIV,
the virus that leads to AIDS. Chapter 41 covers the bacterial world. The
authors of all chapters have made seminal contributions to the topic they are
describing.

Part 10 is an accompanying section of the book that addresses important
informatics technologies that drive the field of computational biology and
bioinformatics. There are three chapters. Chapter 42 is on data handling.
Chapter 43 discusses visualization of bioinformatics data; here, molecular
structures are not the center of the discussion, since their visualization is in
a quite mature state, but we focus on microscopic images data, molecular net-
works and statistical bioinformatics data. Chapter 44 focuses on acquiring the
necessary computational power for performing the analysis from computer
networks (intranets and the Internet). There is a special research community
that provides the progress in the underlying informatics technologies and the
authors of these chapters are outstanding proponents of this community.

In Part 11, finally, Chapter 45 addresses in a cursory manner emerging
trends in the field that were too new at the time of the conceptualization of
the book to receive full chapters, but have turned out to become relevant issue
at the time that the book was written. Thus, this chapter gives a cautious and
anecdotal look into the future of the field of bioinformatics.

The goal of this book is to provide an integrated and coherent account of the
available and foreseeable computational support for the molecular analysis
of diseases and their therapies. The authors that have contributed to the
book represent the leading edge of research in the field. We hope that the
book serves to further the understanding and application of bioinformatics
methods in the fields of pharmaceutics and molecular medicine.
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Bioinformatics Support for Genome-Sequencing Projects
Knut Reinert, Daniel Huson

1 Introduction

Even though the landscape of molecular data in biology has diversified sig-
nificantly in the past decade, DNA sequence data still remain the principle
basis of data collection and contribute to most bioinformatics analyses. Also,
the field of bioinformatics was propelled to its current magnitude mostly by
the rapid development in DNA-sequencing technology. Since experimental
technology only allows the reading of short stretches of DNA, encompassing
just a few hundred basepairs, the assembly of these pieces into contiguous
chromosomes is still a major computational challenge.

In this chapter we first describe current assembly strategies for large gen-
omes in Section 2. We then present some of the main algorithm problems and
their treatment in Section 3 and give an overview of existing assemblers in
Section 4.

2 Assembly Strategies for Large Genomes

2.1 Introduction

Humans have always been fascinated by the “secret of life”, i.e. the question of
how new organisms come into existence, how they develop from “nothing”?
What is and where is the “blueprint”, the set of instructions that determines
the genesis of an animal or plant? In the course of the last century, science
has begun to unravel parts of the puzzle. We know now that the instructions
to build a complex organism are contained in each of its cells, encoded by a
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simple, yet fascinating mechanism. In 1928, Frederick Griffith, and, later, in
1944, Oswald Avery and coworkers pointed out that DNA (consisting of four
very simple biochemical building blocks named adenine, cytosine, guanine
and thymine) plays a vital role in heredity. In 1953, Francis Crick and James
Watson discovered the double-helix structure of DNA which suggested that
a simple linear sequence of nucleic acids gives rise to an intricate code for
describing the blueprint of life. It was not until 1961 that researchers revealed
the genetic code that employs codons, nonoverlapping triplets of nucleotides,
to form a redundant code for the 20 amino acids that are the basic building
blocks of proteins.

For a long time it was unthinkable to determine the actual sequence of
nucleotides of a DNA molecule, i.e. to sequence a fragment of DNA. In
the 1970s, a number of different approaches to sequencing DNA were pur-
sued, and the method developed by Fred Sanger and his group prevailed.
This method and other advances in biotechnology led to the sequencing
of the 49kb-bacteriophage A genome in 1982. For this work Fred Sanger
was awarded the Nobel prize in chemistry in 1980, together with Walter
Gilbert and Paul Berg. In the late 1980s, the question arose whether to
attempt to determine the sequence of the human genome [42,48], a formidable
technological challenge, given the huge size of the genome of approximately
3 billion base pairs. As a consequence, the Human Genome Project (HGP) [30]
was established in 1990 to tackle the problem, armed with with a 15-year plan
and a budget of approximately US$ 3 billion.

A major milestone in genome sequencing was achieved in 1995, when
the 1.8-Mb genome of Haemophilus influenza was completed [14]. This was
followed by the sequencing of other genomes, among them most notably that
of yeast [35]. A main scientific issue in the 1990s was whether large eukaryotic
genomes could be sequenced using a global “whole-genome shotgun assem-
bly” (WGS) approach or whether such genomes needed to be broken down
into smaller pieces and each piece sequenced separately. The assembly of the
genome of the fruit fly (Drosophila melanogaster) in 2000 [38], of the human
(Homo sapiens) in 2001 [54] and of the mouse (Mus musculus) in 2002 [37]
demonstrated that the WGS approach is indeed feasible, and WGS has now
become the leading paradigm.

The sequence of the human genome is of immense medical and biological
importance. Significant advances in sequencing technology (in particular, the
invention of the capillary gel sequencer), the availability of sufficient compu-
tational power and storage technology, and the existence of an appropriate
algorithmic approach [56] inspired the founding of a private company, Celera
Genomics, in 1998 with the stated goal of sequencing the human genome at a
low cost and within a very short time.
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Figure 1 Experimental protocol of paired-end shotgun sequencing.

This sparked off intense competition to produce a first assembly of the
sequence of the human genome as quickly as possible, which led to the
publication of two papers in February 2001 that both describe a draft sequence
of the human genome [25,54].

All major sequencing projects are based on the same experimental tech-
nique, called shotgun sequencing. This technique is based on automated gel
sequencers that use electrophoresis and fluorescent markers to determine the
sequence of the nucleotides. The ability of these machines to read consecutive
pieces of DNA degrades quickly with the length of the sequence and today
a sequencing machine can read up to around 1000 consecutive base pairs
of a fragment of DNA, depending on the degree of accuracy required. The
sequence of a fragment determined in this way is called a read. The fragments
are sampled from a stretch of DNA that is often referred to as the source se-
quence (the sequence that we take the fragment from) or as the target sequence
(the sequence we want to reconstruct from the reads).

To determine the content of a long source sequence, one produces many
copies of the source sequence (e.g. through cloning or growing colonies from a
single progenitor) and then randomly breaks them into smaller pieces. Pieces
of a given length are selected and one or both ends of such pieces are read
by the automated sequencers. If both ends are read one does not only obtain
the sequence at both ends of the piece of DNA, but also information about
the relative orientation and distance of the two reads. This variant of shotgun
sequencing was named paired-end shotgun sequencing by Myers and Weber
[56], who also were the first to recognize the importance of collecting paired-
end reads for sequence assembly. A pair of reads with associated distance
information is called a mate-pair. Note that not all reads are in mate-pairs since
the sequencing of one of the two mates can fail (see Figure 1 for an illustration
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Figure 2 Fragments and mate-pairs.

of the shotgun sequencing process and Figure 2 for a more detailed illustration
of a mate-pair).

The read and mate-pair information together with quality estimates of the
data is fed into a computer program called an assembler that will attempt to
reconstruct the original DNA source sequence. Note that there is no infor-
mation on the location of any given read in the source sequence. However,
by construction, many of the reads will come from overlapping regions of the
source sequence and the first step in sequence assembly is to search for overlap
alignments of high similarity between different reads. The pattern of overlaps
between reads can be used to string together longer pieces of contiguous
sequence, called contigs. The mate-pair information can then be used to order
and orient sets of contigs with respect to each other, thus producing scaffolds.
This process is called sequence assembly, and the resulting set of contigs and
scaffolds is called an assembly. See Figure 3 for an illustration of the process.

Obviously, the large size of genomes makes sequence assembly a very
difficult computational problem. Moreover, there are a number of additional
difficulties. The read and mate-pair data contain errors and since DNA is a

Figure 3 Pair-end reads are assembled into contigs based on how
the reads overlap with each other. The contigs are then organized into
scaffolds using the mate-pair information.
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double-stranded molecule we do not know which strand a read is from. Also,
a read may be chimeric, i.e. it may be the result of a fusion of two different
pieces from different parts of the source sequence. Another problem is caused
by polymorphism. If reads are taken from genomes of different individuals of
the same species, they usually differ, in the case of humans at a rate of about
1 in 1000bp. Even single organisms can be diploid or polyploid (i.e. they
contain more than one copy of the same chromosome). Hence, if the data is
acquired from different individuals that are not inbred, one must deal with
a mixture of reads that come from seemingly different genomes. The largest
difficulty is due to the fact that DNA sequences contain many different repeats
of different size and fidelity. The detection and analysis of repeats is discussed
in Chapter 7.

2.2 Properties of the Data

In this section we discuss some of the properties and error rates of the data
generated in large genome-sequencing projects.

2.2.1 Reads, Mate-pairs and Quality Values

Sequencing large genomes is expensive, and over the past 10 years there has
been a strong focus on developing faster, cheaper and more accurate ways
of determining the sequence of DNA molecules. This includes substantial
improvements in methods for DNA shearing, plaque and colony pickers,
DNA template preparation systems, and, above of all, huge improvements
in the throughput and data quality of automated sequencers (for a review, see
Refs. [33,34]).

Most of the modern sequencers employ different fluorescent markers to dis-
tinguish between the four types of nucleotides. After a prefix of the fragment
has left the sequencer, the marker attached to the last base of the prefix is
excited by a laser and the resulting signal is measured. This analog mea-
surement is converted into a digital base call. Each base determined in this
way is assigned a quality value, given by g = —10 - log;,(p), where p is the
estimated error probability for the base [13]. For example, a quality value
of 10 corresponds to an error rate of 1 in 10, whereas a quality value of 30
corresponds to an error rate of 1 in 1000. The value g is usually encoded in
a single character that is stored together with the base character. Due to the
nature of the sequencing process, it is clear that the distribution of the quality
values is not uniform over the length of a read. The middle part usually has
the best quality, whereas the quality drops at both ends of a read [12,13].

Older sequencers were slab-based and parallel sequencing lanes on an
agarose gel were often mis-tracked, thereby generating incorrect mate-pairs.
Modern capillary-based sequencers have eliminated this problem, but even
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with these machines human error (rotating or mislabeling of sequencing
plates) can result in a wrong association of mate-pairs, leading to chimeric
mate-pairs of unrelated reads. The error rate for mis-association of mate-pairs
used to be about 10% for the older slab-based sequencers, but is now about
1%. Still, most assembly algorithms insist on the presence of more than one
mate-pair to infer the relative ordering of two contigs.

In order to generate many copies of a fragment before sequencing, cloning
vectors such as plasmids are used. The fragment is incorporated into the
cloning vector and a sufficient number of copies is extracted after cloning.

A spur read is a read that aligns only partially to other reads from the
same region of the source sequence. Spur reads can be the result of chimeric
fragments that are obtained when two unrelated fragments fuse together
during the creation of a clone library. They may also arise when fragments
are contaminated with DNA from the linker or cloning vector.

To address these problems, the reads and mate-pairs obtained in the shot-
gun sequencing process are subjected to preprocessing steps that try to detect
and remove most of the mentioned artifacts. For example, in a process
called vector and quality trimming all reads are computationally inspected for
pieces of the cloning vector genome and any traces of cloning vector sequence
are removed. In addition, the quality values can be used to compute the
expected number of errors in a window of the read. Any region (usually at
the beginning or end of a read) for which this number is too high is then
discarded. Such preprocessing steps will remove many of the artifacts, but not
all. Hence, an assembly algorithm has to be able to cope with these problems
to some degree.

2.2.2 Physical Maps

A physical map (see Ref. [47] for a description of the physical map used in
the assembly of the human genome) of a genome G is given by the physical
location of certain markers along G. The markers are used for navigation and
can also be used for anchoring an assembly at its genomic coordinates. If parts
of the target sequence are stored in clone libraries, then the correct order of the
markers can be used to infer the order of the clones.

One can distinguish between two different families of methods for con-
structing a physical map [44]:

(i) Restriction mapping. Here one uses restriction enzymes to digest the DNA
and then uses the lengths of the restriction fragments to reconstruct the
positions of the restriction sites along the sequence. However, this tech-
nique works only for quite short genomic pieces.

(if) Fingerprint mapping. Here we have a set of overlapping clones that we
want to order based on common fingerprints. Therefore, one needs a set
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of clones that covers the target sequence redundantly. To determine which
pairs of clones overlap with each other, we compute a fingerprint for each
clone in such a way that overlapping clones have very similar fingerprints.
The overlap information is used to order both the markers and the clones.

Fingerprints can be derived in a number of ways. One approach is to digest
the DNA with a suitable restriction enzyme (e.g. HindIll was used in Ref. [25])
and use the restriction fragment sizes as a fingerprint. Alternatively, a whole
restriction map of a clone can be used as a fingerprint.

Another way to obtain fingerprints is to use STS markers, which are short
(200-500 bp) DNA sequences that occur exactly once in the given genome
and are detectable by polymerase chain reaction (PCR). A number of other
entities can also be used as markers. An EST is an expressed sequence tag that is
derived from a cDNA [32]. It can be detected via a hybridization experiment
or by PCR. The point is that one needs reliable, (essentially) unique markers,
the presence of which is easily tested for. The assumption is that two clones
overlap if they share a common set of markers.

Since the process of obtaining the fingerprints is error prone, it is very
difficult to obtain a complete and accurate physical map of an entire genome.
Physical maps are believed to have a high error rate of 10-20% [11] which
makes the construction of a (correct) minimum tiling path a daunting task.

2.3 Assembly strategies

Given their higher complexity and larger size, it is not surprising that eukary-
otic genomes are much more difficult to assemble than prokaryotic genomes.
The assembly of a prokaryotic genome has become a routine task, whereas the
assembly of a eukaryotic genome remains difficult. In the large sequencing
projects of the last decade two different strategies were employed to deter-
mine the sequence of large eukaryotic genomes, i.e. the clone-by-clone (CBC)
approach, which was used by the HGP to produce their assembly of the
human genome [25], and the WGS approach, which was originally applied
only to small genomes and was extended to large eukaryotic genomes by
researchers at Celera Genomics [38,54].

Both approaches are based on shotgun sequencing technology, but differ
in an essential preparatory step. In the CBC approach, the target sequence
is broken up into a redundant collection of overlapping pieces of an easily
manageable size of approximately 100-150 kb. DNA molecules of this size
can be incorporated into a vector such as a BAC and they are often referred
to as bacterial artificial chromosome (BAC) clones. The problem of determining
the sequence of a BAC clone is easily solved by using shotgun sequencing and
subsequent assembly. For the human genome this step reduces the problem
of assembling 3 Gb to approximately 40 000 small assembly problems, each of
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size around 100-150 kb. This is done with the help of available physical maps
and computer programs [8,29].

The CBC approach has a number of advantages. Each individual assembly
problem is easily solved, since the data sets are small and contain only local
repeats. In a joint effort, work can be distributed by assigning different clones
to different institutions for sequencing and assembly. The assembly itself is
easier and can often be done without mate-pair information. However, during
the course of the HGP it became evident that these advantages come at a high
price. First, the physical maps used to place the location of assembled BAC
clones are incomplete and have very high error rates. Second, since overlaps
of the BACs are required to determine their order, there is a certain amount
of redundant sequencing necessary, which results in higher costs. Third,
one needs to construct many individual libraries of sequences for both the
individual BAC clones and all their fragments. This allows the introduction
of many artifacts; in particular, the creation of chimeric BAC clones. Fourth, it
turned out that for the final assembly mate-pairs are necessary to improve
the local ordering of contigs (see also description of current assemblers in
Section 4). Finally, the assignment of sequencing a subset of the clones to
different institutions using different protocols and standards leads to data of
uneven quality.

The WGS approach is very bold. Rather than reducing the genome as-
sembly problem to a large set of small BAC clone assembly problems, in
this approach the shotgun strategy is applied to the whole genome. This
method has essentially the opposite advantages and disadvantages of the CBC
approach. The computational problem of assembling the reads is by no means
trivial, requiring sophisticated algorithms, sufficient mate-pair information in
the input and substantial computational resources. In particular, the assem-
bler software has to cope with the full set of repetitive elements. However,
the problem of mapping the resulting contigs and scaffolds to the genomic
axis is not significantly more difficult than in the CBC approach. WGS data is
much less effected by uneven sampling. The main advantage of this approach
is that it is far easier to automate. Only very few libraries need to be created
and sequenced, and all sequenced data is processed in a single computation,
usually in an incremental fashion.

There was much debate over whether the WGS approach could possi-
bly work for large eukaryotic genomes [17,56]. However, the feasibility
of the WGS approach in conjunction with paired-end reads as input was
demonstrated by the assemblies of D. melanogaster [38], H. sapiens [54] and
M. musculus [4,26,37]. WGS is now the predominant approach, and most
current assembly programs are based on it (see Table 1 for an overview).
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3 Algorithmic Problems and their Treatment

The sequence assembly problem is to reconstruct the sequence of a target
DNA molecule from read and mate-pair information, in the presence of errors
and repeats. The simplest mathematical formulation of this problem is the
“shortest common super-string” (SCS) problem. Given a set of strings as
input, the task is to find string s that contains all input strings as substrings
and is shortest among all such super-strings.

Although this formulation is an extreme simplification of the sequencing
problem, it is known to be NP-hard [15] and thus is believed to be impossible
to solve optimally for large instances. A more sophisticated approach is to cast
the problem as a maximume-likelihood problem [41], but this has not led to a
deterministic approximation algorithm.

Current assemblers were developed using an engineering approach and
are not designed to optimize some explicitly stated mathematical objective
function. In this section we will discuss the fundamental tasks that any
assembler program must address and we will outline some of the algorith-
mic approaches that are employed. The process of sequence assembly must
address the following fundamental tasks:

(i) Computation of overlaps in the presence of repeats. To determine the layout
of the reads on the genomic axis each assembly algorithm is based on the
fact that the sequencing is redundant, in the sense that any given position
in the sequence is covered by an average of x reads, where x is usually
between 3 and 12. The value of x is called the x-coverage. Reads that were
sampled from overlapping locations in the source sequence will exhibit a
high scoring overlap alignment. The goal here is to determine which pairs
of reads overlap. Unfortunately, reads may also exhibit a high-scoring
overlap alignment if they stem from different instances of a repeat in the
source sequence.

(ii) Layout of reads. Based on the overlap information, a second fundamental
task is to determine a layout of the reads that overlap in a consistent way.
This amounts to reconstructing nonrepetitive parts of the target sequence.

(iii) Error correction and repeat resolution. The goal here is to distinguish be-
tween sequencing errors and differences induced by the micro-hetero-
geneity of different instances of a repeat, and to attempt to reconstruct
parts of the repetitive sequence.

(iv) Layout of contigs using mate-pairs. The goal here is to use mate-pair infor-
mation to order and orient contigs relative to each other.

(v) Computation the consensus sequence. Finally, the sequence of each contig in
the assembly must be determined.
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In the following sections we will discuss the main methods for solving these
tasks.

3.1 Overlap Comparison of all Reads

The input to an assembly program (or “assembler”)is aset F = {fy,..., f;}
of reads, together with mate-pair information and quality values. In order to
assemble a set of reads, the assembler must be able to decide whether or not
two reads f; and f; were sampled from overlapping locations in the source
sequence.

Conceptually, this can be done by computing an overlap alignment between
each pair of reads or their reverse complements. The detection of an overlap
does not necessarily imply adjacency in the target sequence, since an overlap
can be repeat-induced. In Figure 4 the regions marked R; and R; indicate two
instances of the same repeat with near identical sequences. Hence, reads fj
and f; form a repeat-induced overlap, whereas reads f; and f; form a true
overlap.

Rl R2
Source sequence HE

s — e fi
f fi

Figure 4 Reads that form true and repeat-induced overlaps.

R1 and R; indicate two instances of a repeat.

In a naive approach, one would require O(r?) sequence comparisons to
determine all fragment overlaps. This is not feasible for large genomes where
r ~ 30-50 million. Since most reads do not actually overlap, this computa-
tional expense seems unnecessary. In fact, one can quickly reduce the number
of required overlap computations to O(r), by using the “seed-and-extend-
and-refine” paradigm. All current assemblers use some version of this idea
(Figure 5):

Concatenated reads

T

L e — 7

k-mers

Figure 5 Overlap alignment of reads.



(i)

(if)

(iii)

3 Algorithmic Problems and their Treatment

Build a k-mer index H for all reads. This index maps any “k-mer” w (a
word of length k) to the set of all occurrences of w in the reads. The value
of k should be large enough such that in a random sequence of the same
length as the target sequence, the expected number of k-mers is small.
In contrast, k should not be too large so as to miss true overlaps due to
sequencing errors. This index has two main applications:

(a) If a pair of reads f; and f; do not share at least one k-mer (more
sophisticated methods may have more complex requirements), they
cannot possibly have a high fidelity overlap alignment and we need
not attempt to compute one. If f; and f; contain one or more identical
k-mers, these k-mers are referred to as seeds and the reads are candi-
dates for an extension, which entails a more sophisticated and costly
overlap computation (see Figure 5).

(b) If a k-mer w appears significantly more often in the genome than
expected, it probably lies in a repeat region of the genome. In this
case, to avoid the computation of repeat-induced extensions, the k-
mer is not used as a seed.

A k-mer index can be computed in linear time and space. A first scan
over all reads counts the number of k-mers. This allows us to efficiently
allocate adjacent memory cells for all positions in the sequences that
contain the same k-mer. In a second scan, the positions are written in
the allocated positions (see, e.g. Refs. [5,45]).

The second phase is an extension phase, which makes use of the k-mers
computed in the seed phase. Most ideas used here are very similar to
BLAST [1,40]. Usually one combines two or more k-mer hits that are near
to each other. Then the local alignment is extended in both directions
until the quality of the extension starts to deteriorate. The result of
this phase is a set of local alignments (they are depicted as longer black
diagonals in Figure 6).

Finally, most algorithms end this stage by refining a set of local align-
ments with a fast version of the global Needleman-Wunsch algorithm.
This can be done by using the shared k-mer information in a number of
ways. (i) One can obtain a bound on the quality of the alignment and use
it to compute a banded alignment [7]. (ii) One can compute an alignment
allowing only k mismatches [6, 39, 40]. (iii) One can use the position
of the shared k-mers and compute a chain of the local alignments from
the extension phase together with smaller local alignments between their
ends (see Figure 6 for an illustration).

The described “overlap” phase of assembly produces a collection of pair-
wise overlaps between reads which predominantly consists of true positive
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Figure 6 Seed, extend and refine paradigm. First, k-mer seeds

being extended, then a banded alignment is computed that explores
narrow bands around the extended seeds and, possibly, larger regions
between them.

overlaps (Figure 7), i.e. overlaps that result from the fact that the involved
reads stem from overlapping positions in the target sequence. However,
there will be a number of false positives (repeat-induced overlaps) and false
negatives (which may result from the seed-and-extend strategy missing an
overlap due to sequencing errors). In Section 3.3 we will discuss how true
and repeat-induced overlaps can be used to correct sequencing errors and to
classify different repeat instances.

11 o5 27 [s[ BB
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Figure 7 A collection of pairwise overlapping reads

We can view the collection of overlaps in terms of an edge-weighted, semi-
directed graph, the overlap graph OG(F) (Figure 8). There are two types
of edges in this graph. A directed read-edge represents a read; the source
and target nodes of the edge corresponding to the 5’ and 3’ ends of the
read, respectively. The weight of a read-edge is simply the length of the
corresponding read.

An overlap-edge represents an overlap between two reads and joins the two
appropriate vertices contained in the corresponding read-edges. The weight
of an overlap-edge is set to the negative length of the overlap. If the overlap
corresponds to a gapped alignment of the ends of two reads, the amount of
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Figure 8 Overlap graph corresponding to the collection of overlaps in
Figure 7. Read-edges are shown in bold.

overlap can be more accurately represented by a pair of numbers indicating
the length of the two subsequences involved in the alignment.

3.2 Contig Phase: Layout of Reads

Ideally, in the absence of repeat-induced overlaps each connected component
C of the overlap graph OG(F) will correspond to a collection of reads sampled
from the same local region of the target sequence. However, in practice, due
to the abundance of long-range repeats, the overlap graph always consists of
one huge, highly connected component.

The goal of the layout phase is to determine sets of reads that possess a
consistent layout. Here, a layout is defined as an assignment of coordinates to
all nodes of C that specify the start position s; and the end position e; of each
read f; in C. A layout is called consistent if every overlap-edge e is realized
in the layout, which is the case when the coordinates assigned by the layout
induce the corresponding overlap of the two appropriate reads. A layout is
called correct if the relative positioning of the reads in the layout corresponds
to their relative positioning in the source sequence. Any layout represents
the reconstruction of a stretch of contiguous sequence in the target genome (a
contig).

A read f; is said to be contained in another read f; if f; is equal or highly
similar to an internal portion of f; or the reverse complement of f;. Since con-
tained reads contribute no additional overlap information, they are usually set
aside in the layout phase of assembly. They are brought back into play later
to contribute to the computation of arrival statistics and to the scaffolding of
contigs using mate-pairs.

The problem of determining a minimal consistent layout of a set of over-
lapping reads is equivalent to the SCS. As the latter problem is known to be
NP-hard [15], assemblers use heuristics to address the problem.

One widely used heuristics greedily “selects” a subset of overlap-edges S
such that the union of S and the set of all read-edges F defines an alternating
path of reads and overlaps that spans the set of read-edges. Initially, the edge
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Figure 9 (a) An example of an overlap graph for six reads { f1, ..., f¢}
that are as assumed to overlap as indicated in Figure 7. The edges of

a maximal spanning tree are highlighted. (b) The layout of the reads is
defined by the maximal spanning tree.

representing the longest overlap is selected. Then, all overlap-edges in the
overlap graph are considered in ascending order of length of overlap. An
overlap-edge e is selected if neither of the two nodes of e is already incident to
a selected overlap edge.

Another simple heuristics for assigning the coordinates to a component
C is to compute a maximal spanning tree that includes all read-edges, and
maximizes the amount of overlap between reads (Figure 9).

In the presence of repeat-induced overlaps, any read that spans a repeat
boundary may potentially overlap with reads from unrelated regions of the
genome and thus bring them together in the same component C of the over-
lap graph. In this case, some of the overlap-edges in C will represent true
overlaps, while others will represent repeat-induced overlaps. Both heuristics
described above will fail to produce a correct layout whenever they utilize one
or more repeat-induced overlap-edges.

As discussed before, many repeat-induced overlap-edges can be avoided
in the overlap phase. To alleviate the problem further, one can attempt to
distinguish between true overlaps and repeat-induced overlaps by taking
a closer look at the overlap alignment. A number of mismatches in the
alignment that is significantly higher than expected for the given level of
sequencing error indicates that the two reads come from different instances
of an inexact repeat, ideally taking the quality values into account.

Once a layout has been computed, a closer study of a multiple alignment
of the reads in the layout may yield additional information, provided that
sequencing errors will be randomly distributed, whereas repeat-induced dis-
crepancies will occur in a correlated fashion. This is discussed in more detail
below.

The most useful combinatorial insight is that if the reads contained in a
connected component C of the overlap graph were recruited from different
instances of a repeat and if some of the reads span the repeat boundaries, then
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Figure 10 From left to right the reads overlap consistently until we
reach the “branch point” at the position indicated by a dotted line.
From this position onward, the data is partitioned into two incompatible
chains of overlapping reads. Here, the reads on the left of the branch
point lie in the interior of a repeat, whereas the reads that span the
branch point overlap with a unique flanking sequence.

the latter reads will give rise to inconsistencies in the layout. That means,
there will be overlap-edges in C that are not compatible with the overlaps
induced by the layout. These incompatible overlaps will involve those reads
that span repeat boundaries and a detailed analysis of the pattern of overlaps
will uncover potential branch points in the layout (Figure 10).

A branch point is a position of a layout within a read at which a single
consistent chain of overlapping reads possesses at least two different and
mutually exclusive extensions. Whenever a branch point is detected, the ad-
jacent overlaps are removed from the graph and, consequently, the connected
component C is partitioned into smaller components, each giving rise to an
individual contig.

As mentioned above, a consistent layout of reads defines a contig, which
in this case is also called a unitig ( “uniquelly assemble-able contig”), as any
given set of reads possesses at most one consistent layout.

Ideally, any unitig u computed in the layout phase will represent a unique
stretch of the source sequence and will consist only of reads from that region.
We refer to a unitig of this type as a unique-unitig or U-unitig (Figure 11).
Alternatively, and in the absence of inconsistent overlaps, a unitig # may also
represent a stretch of sequence that is repeated twice or more in the source
sequence and may consist of reads collected from different instances of the
repeat.

Methods for distinguishing between U-unitigs and non-unique unitigs
make use of the sequencing coverage. For a given level of sequencing
coverage, we can work out how many reads we expect to see in a unitig
of a given length under the assumption that the unitig represents a unique
stretch of the source sequence or that the unitig represents repetitive sequence,
respectively.

In other words, a non-unique unitig can often be detected because it con-
tains significantly more reads than expected. Let 7 be the number of reads and
G be the estimated length of the source sequence. It can be shown [31] that for
a unitig consisting of r reads and of approximate length p, the probability of
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non—unique unitig
unique unitig

Figure 11 A unitig represents a chain of consistently overlapping
reads. However, a unitig does not necessarily represent a segment of
unique source sequence. For example, its fragments may come from
the interior of the different instances of a long repeat, as shown here.
R, R" and R” represent three instances of the same repeat.

seeing k — 1 start positions in an interval of length p is:

e~k
Kkt

with ¢ := & if the unitig is not oversampled, and:

e72c(zc)k
Kkt

if the unitig consists of reads recruited from two instances of a repeat. The
arrival statistic is the log of the the ratio of these two probabilities:

c — (log2)k.

In practice, a unitig is considered to be unique if its arrival statistic is 10 or
above, say.

3.3 Error Correction and Resolving Repeats

In the previous section we discussed how a layout of reads can be collapsed
into a contig and how one can detect inconsistencies in the layout that indicate
repeat boundaries or how arrival statistics can be used to classify contigs as
repetitive.

In this section, we use similar techniques, but with a different goal. Branch-
point detection only determines the boundary of a repetitive region to a
unique region in the genome and an arrival statistic can merely point to
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problematic regions. Error correction and repeat resolution approaches take
a closer look at the distributions of errors in the layout of a collection of
reads and their main task is to determine whether a mismatch in a pairwise
alignment is due to a sequencing error, a single nucleotide polymorphism
(SNP) or a low copy repeat.

The errors in a repetitive contig and the errors in a nonrepetitive contig
are differently distributed. In a nonrepetitive contig errors in overlaps can be
explained by sequencing errors which should occur independently from each
other in each read. In contrast to this, repetitive contigs by definition consist
of reads that are from instances of a repeat from different genomic locations.
Depending on the nature of a repeat, two instances differ from each other by
a certain amount.

In order to be able to classify sequences as repetitive or nonrepetitive, one
needs a suitable null model, i.e. the sequencing error rate in the local genomic
region. This error rate was often assumed to be a constant that could be
refined using bootstrapping methods [9]. Alternatively, it was estimated using
the quality values of bases in the reads. Huang [22] estimated the amount
of sequencing errors in a local neighborhood based on the overlaps of an
individual read with its overlapping partners (see also Ref. [21]). Developing
this idea further, one could obtain an even better estimate of the error rate by
constructing a multiple alignment in the layout phase. Such approaches work
well if no additional source of error confuses the estimation of the sequencing
error. If, however, repetitive overlaps are present, then these approaches
cannot be applied directly. Nevertheless, we can assume that we have a rather
good idea of the sequencing error for a collection of overlaps.

The fact that the reads are collapsed into a contig means that this difference
is small, i.e. in the range of 1-3%. This is still significantly higher than
the assumed rate of SNPs and hence this microheterogeneity can be used for
detecting the different repeat instance (Figure 12).

This simply means that we use the fact that an instance of a repeat differs
slightly from other instances. Hence, reads from a certain genomic location
always differ from the reads in the other location, except in the unlikely event
that the corresponding positions are changed by a sequencing error. Some

Figure 12 Sequencing errors (in red) and micro-heterogeneity of a
collapsed repeat (in blue).
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assembly programs like Euler [43] and ARACHNE [4] have a built-in, simple
error correction phase that corrects numerous mistakes.

However, since the problem is modular, several papers addressed it indi-
vidually. In Figure 12 differences caused by repeats are shown in blue and
differences caused by sequencing errors are shown in red. The blue columns
are called DNPs (defined nucleotide positions) [52] or separating columns [28]
and can be used to separate the individual copies of a repeat.

The method of Tammi and coworkers proceeds in a straightforward way. It
first prepares multiple alignments which it then refines, using a realignment
algorithm [2]. Then, the consensus base in a column is defined as the most
frequent base of the column. Whenever we see a certain number of coinciding
differences from the consensus, the column is a candidate for usage in repeat
separation (e.g. the first blue columns in Figure 12). If another candidate
column can be found, these candidate columns define a DNP (e.g. the second
blue column Figure 12).

Since the above procedure identifies errors that are due to micro-heterogen-
eity in repeats, we can attribute the remaining errors to the sequencing phase.
Hence, the DNPs can also be used for correcting sequencing errors [51].

3.4 Layout of Contigs

In the layout phase, reads are assembled into contigs based on their overlaps,
as reported in the overlap graph. Ideally, one may hope that this will give rise
to a small number of very large contigs, perhaps one per chromosome arm.
However, due to two problems this cannot happen. (i) Shotgun sequencing
produces a random sampling of the source sequence, thus the coverage fluctu-
ates along the sequence and some regions will remain unsampled, giving rise
to sequencing gaps (see Ref. [31] for a mathematical treatment of the statistics
for the length and number of such gaps). (ii) Repeats in the source sequence
lead to the break-up of potential contigs into smaller ones, as described above.

Hence, a common strategy is to arrange sets of contigs into so-called scaffolds
or super-contigs with the help of mate-pair information. More precisely, a
scaffold consists of an ordered list of contigs (c1, ¢y, . . ., ct), alongside a specifi-
cation of the orientation of each individual contig (i.e. whether to use c; or the
reverse complement ¢;) and an estimation of the distance between any two
consecutive contigs. A scaffold is deemed correct if the relative positioning
and orientation of its contigs corresponds to the true locations in the source
sequence.

As described above, shotgun sequencing projects often use a paired-end or
double-barreled shotgun protocol, in which clones of a given fixed length are
sequenced from both ends. This approach produces pairs of reads, called
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Figure 13 If two assembled contigs ¢ and ¢, correspond to
neighboring regions of the source sequence, then we can expect to
find mate-pairs that span the gap between them.

mate-pairs, whose relative orientation and mean distance / (with standard
deviation 6) are known (Figure 2).

Standard size-selection techniques are used to produce a collection (library),
of clones that have approximately the same length. A typical mixture of
clone lengths is | = 2, 10 and 150kb. With care, a standard deviation ¢ of
approximately 1/10 of [ can be achieved.

Consider two contigs ¢; and ¢; produced in the layout phase of assembly.
If they correspond to neighboring regions in the source sequence, we can
expect to find mate-pairs that span the gap between them, as indicated in
Figure 13. Such mate-pairs can be used to determine the relative orientation
and estimated distance between ¢; and ¢j.

Assume that the two contigs c; and cp are connected by mate-pairs mq, mj,

..,mg. Bach mate-pair provides an estimate of the distance between the
two contigs. If these estimates are viewed as independent measurements,
then they can be combined into a single estimate using standard statistical
calculations.

As the assignment of reads to their mates is error prone, the existence of a
single mate-pair linking two different contigs is not deemed significant. It is,
however, of great statistical significance if two U-unitigs ¢; and ¢, are linked
by two different mate-pairs in a consistent way. Similarly it is very unlikely
that two mate-pair specification errors would put together two pairs of reads
from the same two local regions of the source genome.

Assume that we are now given a collection of contigs {c1,¢c2,...,cx} and a
table of mate-pair information that links pairs of reads that are embedded in
the contigs. To discuss the problem in more detail, we introduce the contig-
mate graph. In this graph, each contig c; is represented by a directed contig-edge
having nodes s; (the start node) and e; (the end node). So-called mate-edges are
added between such nodes to indicate that the corresponding contigs contain
reads that are mates. For example, the two contigs c; and ¢y, together with the
collection of mates depicted in Figure 14 give rise to the contig-mate graph
indicated in Figure 15.

If a set of different mate-pairs link two different contigs c; and c¢; in a
consistent manner, then the contig-mate graph can be simplified by replacing
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Figure 14 Here we depict two contigs that are linked by four mate-
pairs. Each mate-pair provides an estimate (/;, 5;) of the gap between
the two contigs, and simple statistics can be used to estimate a
resulting mean distance D and standard deviation .
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W

Figure 15 The two contigs and four mate-pairs shown in Figure 14
give rise to two contig-edges and four mate-edges in the contig-mate
graph, as shown here.

cl c2

the set of edges by a single bundled mate-edge e, whose mean length p and
standard deviation can be computed from the values for the original mate-
edges, using straightforward statistics. Additionally, e is assigned a weight to
reflect the number of mate-pairs that support it. Further edges can be bundled
using so-called transitive reduction, which we do not describe here.

The goal of the scaffolding phase is to use the contig-mate graph to determine
the true relative order and orientation of a set of contigs that are linked by
mate-pairs. Most assemblers use different heuristics to address this problem.

We briefly discuss how this problem can be formalized (see Ref. [23] for
details). An ordering or scaffolding of a set of contigs can be specified as a
path P through the corresponding contig-mate graph. To this end, it may be
necessary to infer “missing edges” between consecutive contig-edges in the
path. To evaluate such a scaffolding one can look at all the mate-edges in the
graph. We say that a mate-edge ¢ is satisfied if the mate-pair layout implied
by e is compatible with the ordering and orientation of contigs implied by P,
otherwise e is called unsatisfied. Thus, the scaffolding phase can be stated as
the following optimization problem: for a connected contig-mate graph, find
a path P through the graph that contains all contig-edges, that possibly uses
additional inferred edges and maximizes the number of satisfied mate-edges.
This problem has been shown to be NP-hard [23].

Existing assemblers use straightforward heuristics in an attempt to form
scaffolds. One heuristics that addresses the stated optimization problem
directly is the “greedy path-merging” algorithm [23]. Given a connected
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contig-mate graph, the algorithm proceeds “bottom-up” as follows, main-
taining a valid scaffolding S C E. Initially, all contig-edges cy,¢y,...cx are
selected, but no others. At this stage, the graph consists of k selected paths
Py = (c1),...,Px = (ck). Then, in ordering of decreasing weight, each mate-
edge e = {v, w} is considered. If v and w lie in the same selected path P;, then
e is a chord of P; and no action is necessary. If v and w are contained in two
different paths P; and P;, we attempt to merge the two paths to obtain a new
path Py and accept such a merge, provided the increase of S(G) (the number
of satisfied mate-edges) is larger than the increase of U(G) (the number of
unsatisfied ones).

3.5 Computation of the Consensus Sequences

In a final step we need to determine the actual sequence for the target
molecule. So far, we have discussed how to construct contigs, how to order
them in scaffolds and how to address the problem of repeat resolution. The
pairwise overlaps between reads provide only an approximate layout of the
reads with respect to each other. To obtain a final layout, one needs to solve a
special multiple alignment problem, with the following properties:

o The reads of the multiple alignment are almost identical.

e Quality values can be incorporated in the computation of the consensus
sequence and be used to assign quality scores to consensus characters.

o The alignment is usually of depth 5-10 and very long (up to millions of base
pairs).

e We need to compute the alignment very fast.

The fact that the initial read layout already gives an approximate alignment
and the need to compute the alignment quickly results in the application of
heuristics to solve the multiple alignment problem, since a generalization of
the dynamic programming-based approach would result in a running time of
O(n*) where k is about 5-10.

Most assemblers [4,26,50] implement the idea depicted in Figure 16 in some
way. For each contig an alignment is “grown”, starting with the pairwise
alignment of the two left-most reads or the two reads with the best pairwise
similarity. Then, the next read is aligned to the multiple alignment of the
previous two reads and so on. Aligning a read to an alignment is usually
done by converting the multiple alignment into a profile, and then employing
an adaption of the pairwise alignment algorithm to the profile and the read
(Figure 16). If quality values are at hand, they can be incorporated in to the
alignment computation.
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CGATAGCTAGG-CTAGCATCGC
CTAGGGCTAGCATCGGGGCGCC
GCTAGCAT-GGGGCGCCCTCGATCGTT
ATCG--GCGCCCTCG-TCGTTGCTAATAG

add next read to box

CGCCCTCGTCGTTGCTAATAGCGTTGCGC
Figure 16 Computation of the consensus sequence.

Once a multiple alignment has been determined, a consensus character is
computed for each column of the multiple alignment. This can be done by
simply voting on the majority character or, alternatively, by weighing the vote
using the quality values [4]. If prior knowledge of the base composition is at
hand, it can even be incorporated in a Bayesian approach [9] which computes
the most likely consensus character and also derives a quality value for it.
Some assembly programs employ ad hoc heuristics to incorporate the quality
values [21] or use the approach implemented in the Phrap package [16,18,36].
Phrap avoids computing a multiple alignment altogether. Instead, it chooses
a chain of single reads which are chosen such that they provide adjacent
intervals of high-quality base calls. In each interval this single high-quality
base is chosen for the consensus sequence.

Although this strategy does not use all available information, it avoids
some artefacts introduced by the progressive method commonly used for
the computation of multiple alignments. For example, Figure 17 shows a
typical output of a progressive alignment on the left. Depending on the
score function, the last read may result in three different alignments with
other reads which are merged into a multi-alignment that introduces two
Ts into the consensus sequence (depicted in blue). However, the multi-
alignment on the right is more likely to be correct, since it can be explained
with only two sequencing errors in the last read. Such additional characters
are to be avoided, since they confound gene prediction algorithms and other

Figure 17 Common error in consensus computation.
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computational sequence analysis tools. A possible strategy to achieve this is
to use iterative refinement strategies that correct such mistakes [2].

4 Examples of Existing Assemblers

In Table 1 we give an overview of current assemblers that are able to compute
an assembly of large eukaryotic genomes and list some of the genomes that
have been applied to. We use the attributes CBC and WGS to indicate whether
the assembler follows more the CBC or the WGS paradigm. Assemblers that
take clone information and a WGS data set as input are marked as hybrid.

Table 1 Recent assembly programs for eukaryotic genomes.

Name Year Strategy ~ Genomes (examples)
Celera 2000 WGS H. sapiens [54], M. musculus [37],
D. melanogaster [38], Anopheles gambiae [19],
GigAssembler 2001 CBC H. sapiens [29]
ARACHNE 2002 WGS M. musculus [4,26]
JAZZ 2002 WGS Fugu rubripes, Ciona intestinalis [3,10]
RePS 2002 WGS Oryza sativa [55,57]
Barnacle 2003 CBC H. sapiens [8]
PCAP 2003 WGS Caenorhabdtis briggsae, M. musculus [20]
Phusion 2003 WGS M. musculus [36]
Atlas 2004 hybrid Rattus norvegicus [18,46]

In the following we give short descriptions of the assemblers listed in Table
1. This will give the flavor of the latest algorithmic approaches and show that
all assemblers use similar ideas.

4.1 The Celera Assembler

The Celera assembler was the first WGS assembler to assemble large eukary-
otic genomes [38,54]. It screens the reads, removes vector or linker sequence
and keeps only the interval with an average sequence identity of 98%. The
overlapper module compares all pairs of reads to detect high-fidelity overlaps.
To avoid a quadratic number of overlap computations, the overlapper uses a
k-mer index to exclude nonrelated pairs from the expensive overlap. This
results in a read-overlap graph as described in Section 3.1. Regions of this
graph are assembled into contigs whenever the initial arrangement of reads in
this region is unique. The Celera assembler incorporates mate-pair informa-
tion, and orders and orients the contigs. The remaining gaps are closed in a
sequence of less and less conservative steps. First contigs are placed if they are
“anchored” by two mate-pairs, then if they are anchored by one mate-pair and
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an overlap path and so on. For each contig a consensus sequence is computed
based on a progressive multiple alignment and a local heuristics to remove
merging artefacts.

4.2 The GigAssembler

The GigAssembler [29] was designed to assemble the human genome from
the CBC data obtained from the HGP [25]. It had to assemble all BACs in a
tiling layout of clones. In addition to this input set, it uses mate-pairs, mRNA
and EST information to bridge gaps in scaffolds. The GigAssembler screens
the input sequences for contaminations and masks known repeats. Additional
sequence information (reads of mate-pairs, ESTs, mRNA and BAC end reads)
is aligned to the input. Similar to the description in Section 3.1, GigAssembler
builds a lookup table of 10-mers and then conducts a detailed alignment in
regions where consecutive 10-mers match. The main routine of the GigAssem-
bler builds sequence contigs (called “rafts”) from overlapping initial sequence
contigs within a clone. Then it builds clone contigs (called “barges”) from
overlapping clones, and orders and orients the resulting contigs into “super-
contigs”. These assemblies are combined into full chromosome assemblies.

4.3 The ARACHNE Assembler

The ARACHNE assembler was developed by a group at the MIT that was also
a major partner in the HGP. In its first version [4] its functionality was tested
by reassembling the genomes of H. influenza, Saccharomyces cervisine and D.
melanogaster, as well as the two smallest human chromosomes, 21 and 22. A
later version of ARACHNE [26] was used in the public assembly of the mouse
genome. ARACHNE appears to be modeled after the Celera assembler, with
a few differences.

As a true WGS assembler its input consists of a set of reads and mate-pairs
where the mate-pairs are taken from carefully length selected clone libraries.
An overlap phase is conducted as outlined in Section 3.1. In addition, it
employs an error correction phase using multiple alignments deduced from
the pairwise overlaps.

The contig assembly phase differs from the one employed in the Celera
assembler, since it directly incorporates mate-pairs by identifying “paired
reads”, which are reads of two mate-pairs where the two left and the two
right reads overlap, respectively. This is a clever way to form contigs that are
consistent in overlap and mate-pair information.

ARACHNE computes repeat boundaries by inspecting the pairwise over-
laps. To detect remaining repetitive contigs ARACHNE uses an arrival statis-
tic similar to the one described above, together with the fact that repetitive
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contigs are likely to have mate-pairs that link them in a contradictory way to
other contigs.

ARACHNE uses mate-pairs to build scaffolds using a greedy algorithm
that gives priority to merging contigs that are supported by the most links
involving the shortest distance. This phase is followed by an attempt to fill
gaps using contigs that were previously labeled as repetitive. Since the first
labeling was conservative, this will often succeed. A consensus sequence is
derived by heuristicly computing a multiple alignment.

4.4 The JAZZ Assembler

The JAZZ assembler is a modular assembler making use of different, some-
times already existing modules. The input reads are trimmed with respect
to a window average of the quality values. In addition, they are checked for
vector contamination which is then removed. The overlap phase is similar
to the description of Section 3.1. An index of 16-mers is constructed. All
16-mers that occur too often are not used for triggering a more expensive
alignment step. Then all reads that share more than ten non repetitive 16-mers
are aligned using a banded Smith-Waterman algorithm. JAZZ constructs a
scaffolded layout of reads. In particular, JAZZ postpones the computation
of contigs until the consensus phase, which employs a consensus algorithm
similar to Phrap. JAZZ tries to close gaps in scaffolds that are due to repeats
in the genome.

4.5 The RePS Sssembler

The RePS uses also Phrap as its main assembly engine. It was primarily used
to assemble the rice genome [55]. RePS masks out repeated 20-mers. The
masked reads are handed to Phrap. As a post-Phrap step, RePS uses mate-
pairs to fill gaps and build scaffolds. The strategies RePS uses are concepts
borrowed from the Celera assembler.

4.6 The Barnacle Assembler

Barnacle [8] is an assembler that was used to reassemble the human genome
from the public CBC data. In contrast to GigAssembler it does not make use
of a physical map, but uses mate-pairs and clone data only (possibly aug-
mented with chromosome assignments). Barnacle computes all pairwise local
alignments of the input sequence. This is done using a strategy as described
in Section 3.1. Using those overlaps, contigs in the input set are merged
whenever possible, thereby reducing the number of contigs by an order of
magnitude. The clone overlaps are deduced (two clones overlap if, and only
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if, at least one contig pair of the corresponding clones overlaps) and conflicts
are resolved by heuristically enforcing the layout graph (clones are vertices,
overlaps induce edges) to be an interval graph. Barnacle orients the contigs
starting from the interval representation of clones and assign coordinates to
sub-contigs. Again, possible inconsistencies result in the discarding of the
contigs involved.

4.7 The PCAP Assembler

The PCAP assembler is a true WGS assembler that incorporates many aspects
of the well known CAP3 assembler [21]. One interesting aspect of PCAP is the
way repeats are identified de novo during the overlap computation. For this,
the set of reads is partitioned into subsets that can be distributed on many
computers. Then, in an iterative process, repeats are identified during the
overlap computation and used to avoid the computation of repeat induced
overlaps. To do this, some overlaps are computed and repetitive regions are
identified based on those overlaps. These repeats are used in the next round
of overlap computations, and so on.

The overlaps themselves are computed in a manner similar to the approach
outlined in Section 3.1. Prior to the construction of contigs, the depth of
coverage at every point in the initial layout determined by the overlaps is
computed. Using the depth of coverage, overlaps are assigned a score that
reflects whether they are repeat induced or not. Only overlaps that are likely
to be unique are used in the contigging step. In addition, poor ends of reads
are located and clipped and chimeric reads discarded (all based on pairwise
overlaps).

Contigs are formed by inspecting read overlaps in decreasing order of their
adjusted score. Then the CAP3 algorithm for scaffolding is applied. It consists
of finding groups of mate-pairs that indicate a mis-assembly of the contig.
If such mate-pairs can be found, the contig is corrected and the mate-pair
consistency is checked again.

A simple gap filling strategy based on finding overlap paths is applied,
multiple alignments are computed and a consensus sequence is derived as
in CAP3. The computation of the consensus sequence involves a heuristic
procedure that makes use of the quality values of the reads.

4.8 The Phusion Assembler

The Phusion assembler was primarily designed to assemble the mouse
genome from a WGS data set at 7.5x coverage [36] and was developed in
parallel with the ARACHNE assembler [4,27]. It is a modular assembler in
the sense that it incorporates an older program, i.e. Phrap, as an integral part
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of its operation. It screens the input reads for poor quality reads, which are
completely removed, and conducts a screening for vector contamination.

Phusion computes a histogram of all k-mers for a suitable k. Similar to
the Atlas assembler, it uses this histogram to exclude k-mers that occur too
seldomly (probably sequencing errors) and too often (probably repeats). The
remaining k-mers are used to group the reads into contiguous groups, which
are then passed to Phrap for assembly. This strategy is quite similar to the
Atlas assembler and the compartmentalized assembler used by Celera to
assemble a version of the human genome [24].

Phusion uses Phrap as its assembly engine and iteratively computes as-
semblies of sets of reads. It checks the consistency of the mate-pairs in
this set. Whenever an inconsistency is detected, Phusion splits the set and
reassembles the parts using Phrap. This results in a number of contigs that
might share sequence parts. Phusion tries to join contigs based on the number
of shared reads and sequence overlaps, a strategy not unlike that of the
GigAssembler [29]. The resulting, larger contigs are scaffolded, using the
mate-pair information.

4.9 The Atlas Assembler

The Atlas assembly system is a suite of programs that form a hybrid assembler
which uses reads from WGS and from CBC data sets. Thus, it is very similar
to the compartmentalized assembler developed at Celera Genomics [24,54].

Atlas trims the input reads based on the error rate in a local window.
It builds a k-mer index of the WGS reads, since these cover the genome
uniformly. Similar to the Phusion assembler, it uses the fact that seldomly
occurring k-mers are likely to contain sequencing errors, while abundant k-
mers are likely to be repetitive. Atlas establishes the “rarity” of a k-mer in the
overlap phase, using such k-mers to seed a banded alignment as described in
Section 3.1.

The WGS reads are binned by using the localized BAC clone reads to
“catch” the corresponding WGS reads. The reads in each BAC bin are assem-
bled using Phrap. Since Phrap does not use mate-pairs during the assembly,
the resulting contigs are checked for consistency and, if found to be inconsis-
tent, split using the mate-pair information. The same information is then used
to scaffold the resulting contigs. The improved BACs are called eBACs.

Atlas performs a meta-assembly of the eBACs. Based on overlap informa-
tion and independent mapping data, a tiling path of eBACs is computed. The
assembly induced by this tiling path is refined using rolling-Phrap, which is
an iterative procedure calling Phrap in a window that is cleverly moved over
the tiling path. The resulting large contigs are linked using mate-pairs and
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localized BAC reads, and then anchored on the genomic axis using external
mapping data.

4.10 Other Assemblers

There are a number of other assemblers that are not described here, either
because they have been outdated by more recent developments (e.g. Refs. [14,
50]) or because they have not been used to assemble large eukaryotic genomes.
Specifically, we would like to mention the Euler (or Euler-DB) assembler [43],
which formulates the assembly problem differently, using a k-mer graph.

The last years have seen the development of a host of different assembly
programs, which nevertheless share a significant portion of algorithmic ideas.
In general, sequence assembly can be seen as a concatenation of algorithmic
modules with well-defined interfaces. Hence, we believe that it would be
worthwhile to combine the best implementations of these modules, an ap-
proach that has been taken by the Amos consortium hosted by The Institute
for Genomic Research (TIGR) [53].

5 Conclusion

Assembling whole eukaryotic genomes was deemed impossible only 15 years
ago. Yet, an initiative was founded to tackle the seemingly gargantuan task
of assembling the human genome. Whole-genome assembly of eukaryotic
genomes, once strongly criticized as impractical, has now been successfully
applied to a number of large genomes and has become the standard ap-
proach. This would not have been possible without bioinformatics support,
the development of efficient assembly algorithms and solid engineering to
implement those algorithms into robust computer programs that also handle
all peculiarities of the data that are not captured in the mathematical models.
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Sequence Alignment and Sequence Database Search
Martin Vingron

1 Introduction

In evolutionary studies two characters are called homologous when they
share common evolutionary ancestry. Genes may also be homologous, which
usually is reflected by similarity among their DNA or amino acid sequences.
Furthermore, homology among genes frequently implies that they are func-
tionally similar. Thus, there are two good reasons to compare the sequences
of genes or proteins, i.e. the unraveling of evolutionary relationships and
extrapolating function from one gene to another.

The basis for the study of sequence similarity is the comparison of two
sequences which will be dealt with in Section 2. Sequence comparisons
are performed in large numbers when searching sequence databases for se-
quences that are similar to a query sequence. Algorithms for this purpose
need to be fast, even at the expense of sensitivity. Section 3 discusses the
widely used heuristic approaches to database searching. However, the algo-
rithms we are designing for the purpose of quantifying sequence similarity
can only be as good as our understanding of evolutionary processes and thus
they are far from perfect. Therefore, results of algorithms need to be subjected
to a critical test using statistics. Methods for the assessment of the statistical
significance of a finding are introduced in Section 4.

Genes do not come in pairs, but rather in large families. Consequently,
the need arises to align more than two sequences at a time, which is done
by multiple alignment programs. Computationally a very hard problem,
it has attracted considerable attention from the area of algorithm develop-
ment. Section 5 presents the basic approaches to multiple sequence alignment.
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Section 6 builds on the knowledge of a multiple alignment and introduces
how to exploit the information contained in several related sequences for the
purpose of identifying additional related sequences in a database. The last
section covers methods and resources to structure the entire space of protein
sequences.

2 Pairwise Sequence Comparison
2.1 Dot plots

Dot plots are probably the simplest way of comparing sequences [55]. A
dot plot is a visual representation of the similarities between two sequences.
Each axis of a rectangular array represents one of the two sequences to be
compared. A window length is fixed, together with a criterion under which
two sequence windows are deemed to be similar. A typical choice for this
similarity criterion would be a certain fraction of matching residues within a
window. Whenever one window in one sequence resembles another window
in the other sequence, a dot or short diagonal is drawn at the corresponding
position of the array. Thus, when two sequences share similarity over their
entire length a diagonal line extends from one corner of the dot plot to the
diagonally opposite corner. If two sequences only share patches of similarity
this is revealed by diagonal stretches.

Figure 1 shows an example of a dot plot. There, the coding DNA sequences
of the a- and B-chains of human hemoglobin are compared to each other. For
this computation the window length was set to 31. The program adds up the
matches within a window and the gray value at the position corresponding to
the center of the window is set according to the quality of the match at that
position. One can clearly discern a diagonal trace along the entire length of the
two sequences. Note the jumps where this trace changes to another diagonal
of the array. These jumps correspond to the position where one sequence has
more (or fewer) letters than the other one. Figure 1 was produced using the
program “dotter” [71].

Dot plots are a powerful method of comparing two sequences. They do not
predispose the analysis in any way such that they constitute the ideal first-pass
analysis method. Based on the dot plot the user can decide whether they deal
with a case of global, i.e. beginning-to-end, similarity or local similarity. “Lo-
cal similarity” denotes the existence of similar regions between two sequences
that are embedded in the overall sequences which lack similarity. Sequences
may contain regions of self-similarity which are frequently termed internal
repeats. A dot plot comparison of the sequence itself will reveal internal
repeats by displaying several parallel diagonals (see also Chapter 7).
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Figure 1 Dot plot comparing two hemoglobin sequences. The
horizontal axis corresponds to the sequence of the human
B-hemoglobin chain; the vertical sequence (numbered from top
to bottom) represents the human a-hemoglobin chain.

Instead of simply deciding if two windows are similar, a quality function
may be defined. In the simplest case, this could be the number of matches
in the window. For amino acid sequences the physical relatedness between
amino acids may give rise to a quantification of the similarity of two win-
dows. For example, when a similarity matrix on the amino acids (like the
Dayhoff matrix, see below) is used one might sum up these values along the
window. However, when this similarity matrix contains different values for
exact matches this leads to exactly matching windows of different quality. The
dot plot method of Argos [5] is an intricate design that reflects the physical
relatedness of amino acids. The program dotter [71] is an X-windows-based
program that allows for displaying dot plots for DNA, for proteins and for
comparison of DNA to protein.

59



60 | 3 Sequence Alignment and Sequence Database Search

Figure 2 Sequence alignment between the amino acid sequences
of human hemoglobin a- and B-chains. Note that these are the
same genes for which the dot plot of the corresponding coding DNA
sequences is shown in Figure 1.

2.2 Sequence Alighment

A sequence alignment [81] is a scheme of writing one sequence on top of
another such that the residues in the same position are deemed to have a
common evolutionary origin. If the same letter occurs at the same position
in both sequences, then this position has been conserved in evolution (or,
coincidentally, mutations from another ancestral residue have given rise to the
same letter twice). If the letters differ it is assumed that both derive from the
same ancestral letter, which could be one of the two or neither. Homologous
sequences may have different length, though, which is generally explained
through insertions or deletions in sequences. Thus, a letter or a stretch of
letters may be paired up with dashes in the other sequence to signify such an
insertion or deletion. Since an insertion in one sequence can always be seen as
a deletion in the other one sometimes uses the term “indel” (or, simply, “gap”).
Figure 2 depicts an example of an alignment. The sequences aligned there are
the proteins derived from the coding sequences compared in Figure 1. Note
that the first stretch of contiguously aligned amino acids (up to the WGKV
match) corresponds to the first diagonal stretch in the dot plot of Figure 1. The
subsequent insertion of 2 amino acids in the a-chain corresponds to linking
this first diagonal to the second one, which is located around position 100.
Likewise, the next five-letter gap in the alignment corresponds to the join from
the second diagonal to the third, starting around position 200 in the dot plot.

In such a simple evolutionarily motivated scheme, an alighment mediates
the definition of a distance for two sequences. One generally assigns a score
of zero to a match, some positive number to a mismatch and a larger positive
number to an indel. By adding these values along an alignment one obtains a
score for this alignment. A distance function for two sequences can be defined
by looking for the alignment which yields the minimum score.
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Figure 3 Schematic representation of the edit matrix comparing two
sequences. The arrows indicate how an alignment may end according
to the three cases described in the text.

Naively, the alignment that realizes the minimal distance between two
sequences could be identified by testing all possible alignments. This num-
ber, however, is prohibitively large; luckily, using dynamic programming,
the minimization can be effected without explicitly enumerating all possible
alignments of two sequences. To describe this algorithm [64] denote the two
sequences by s = sq,...,5, and t = t,...,t,. The key to the dynamic pro-
gramming algorithm is the realization that for the construction of an optimal
alignment between two stretches of sequence sy, ..., s; and ty,. .., t; it suffices
to inspect the following three alternatives:

(i) The optimal alignment of sq,...,s;_1 with f1,...,t;_1, extended by the
match between s; and ¢;;

(if) The optimal alignment of sy, ...,5;_1 with ¢y,..., tj, extended by matching

V7

s; with a gap character “-”;

(iii) The optimal alignment of sy, ...,s; with#y,...,t; 1, extended by matching
a gap character “~” with ¢;.

Each of these cases also defines a score for the resulting alignment. This score
is made up of the score of the alignment of the so far unaligned sequences
that used plus the cost of extending this alignment. In case (i), this cost is
determined by whether or not the two letters are identical; in cases (ii) and (iii),
the cost of extension is the penalty assigned to a gap. The winning alternative
will be the one with the best score (Figure 3).

To implement this computation one fills in a matrix the axes of which are
annotated with the two sequences s and ¢. It is helpful to use north, south,
west and east to denote the sides of the matrix. Let the first sequence extend
from west to east on the north side of the matrix. The second sequence extends
from north to south on the west side of the matrix. We want to fill the matrix
starting in the north-western corner, working our way southward row by
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row, filling each row from west to east. To start, one initializes the northern
and western margin of the matrix, typically with gap penalty values. After
this initialization the above rules can be applied. A cell (i,j) that is already
filled contains the score of the optimal alignment of the sequence sy, ...,s;
with t1,...,t;. The score of each such cell can be determined by inspecting
the cell immediately north-west of it [case (i)], the cell west [case (ii)] and the
one north [case (iii)] of it, and deciding for the best scoring option. When the
procedure reaches the south-eastern corner, that last cell contains the score of
the best alignment. The alignment itself can be recovered as one backtracks
from this cell to the beginning, each time selecting the path that had given rise
to the best option.

The idea of assigning a score to an alignment and then minimizing or maxi-
mizing over all alignments is at the heart of all biological sequence alignment.
However, many more considerations have influenced the definition of the
scores and made sequence alignment applicable to a wide range of biological
settings. First, note that one may either define a distance or a similarity
function of an alignment. The difference lies in the interpretation of the values.
A distance function defines positive values for mismatches or gaps and then
aims at minimizing this distance. A similarity function assigns high values
to matches and low values to gaps, and then maximizes the resulting score.
The basic structure of the algorithm is the same for both cases. In 1981, Smith
and Waterman [69] showed that for global alignment, i.e. when a score is
computed over the entire length of both sequences, the two concepts are in
fact equivalent. Thus, it is now customary to choose the setting that gives
more freedom for appropriately modeling the biological question of interest.

In the similarity framework one can easily distinguish among the different
possible mismatches and also among different kinds of matches. For example,
a match between two tryptophans is usually regarded to be more important
than a match between two alanines. Likewise, the pairing of two hydropho-
bic amino acids like leucine and isoleucine is preferable to the pairing of a
hydrophobic with a hydrophilic residue. Scores are used to describe these
similarities and are usually represented in the form of a symmetric 20 x 20
matrix, assigning a similarity score to each pair of amino acids. Although
easy to understand from the physical characteristics of the amino acids, the
values in such a matrix are usually derived based on an evolutionary model
that enables one to estimate whether particular substitutions are preferred or
avoided. To be more precise, the similarity score for 2 amino acids is defined
as the logarithm of the likelihood ratio of the two residues being homologous
versus finding them at their corresponding positions due to chance. This
approach has been pioneered by Dayhoff [17] who computed a series of amino
acid similarity matrices. Each matrix in this series corresponds to a particular
evolutionary distance among sequences. This distance is measured in a unit
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called 1 PAM, for 1 Accepted Point Mutation (in 100 positions). The matrices
carry names like PAM120 or PAM250, and are supposed to be characteristic
for evolutionary distances of 120 or 250 PAM, respectively. Other more recent
series of matrices are the BLOSUM matrices [27] or the VT series of matrices
[57]. For every matrix one needs to find appropriate penalties for gaps.

The treatment of gaps deserves special care. The famous algorithm by
Needleman and Wunsch [60] did not impose any restrictions on the penalty
assigned to a gap of a certain length. For reasons of computational speed,
later gap penalties were restricted to a cost function linear in the number
of deleted (inserted) residues [64]. This amounts to penalizing every single
indel. However, since a single indel tends to be penalized such that it is
considerably inferior to a mismatch, this choice resulted in longer gaps being
quite expensive and thus unrealistically rare. As a remedy, one mostly uses
a gap penalty function which charges a gap open penalty for every gap that
is introduced and penalizes the length with a gap extension penalty which is
charged for every inserted or deleted letter in that gap. Clearly, this results
in an affine linear function in the gap length, frequently written as g(k) =
a+bx*k[80].

With the variant of the dynamic programming algorithm first published
by Gotoh [23] it became possible to compute optimal alignments with affine
linear gap penalties in time proportional to the product of the lengths of
the two sequences to be aligned. This afforded a speed-up by an order
of magnitude compared to a naive algorithm using the more general gap
function. A further breakthrough in alignment algorithms development was
provided by an algorithm that could compute an optimal alignment using
computer memory only proportional to the length of one sequence instead of
their product. This algorithm by Myers and Miller [59] is based on work by
Hirshberg [29].

Depending on the biological setting, several kinds of alignment are in
use. When sequences are expected to share similarity extending from the
beginning of the sequences to their ends, they are aligned globally. This
means that each residue of either sequence is part either of a residue pair or a
gap. In particular, it implies that gaps at the ends are charged like any other
gap. This, however, is a particularly unrealistic feature of a global alignment.
While sequences may very well share similarity over their entire length (see
the example dot plot of two hemoglobin chains in Figure 1), their respective
N- and C-termini usually are difficult to match up, and differences in length
at the ends are more of a rule than an exception. Consequently, one prefers
to leave gaps at the ends of the sequences unpenalized. This variant is easy
to implement in the dynamic programming algorithm. Two modifications are
required. First, the initialization of the matrix needs to reflect the gap cost of
zero in the margin of the matrix. Second, upon backtracking, one does not
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necessarily start in the corner of the matrix, but rather searches the margins
for the maximum from which to start. Variants of this algorithm that penalize
only particular end-gaps are easy to derive and can be used, for example, to
fit one sequence into another or to overlap the end of one sequence with the
start of another.

In many cases, however, sequences share only a limited region of similarity.
This may be a common domain or simply a short region of recognizable simi-
larity. This case is dealt with by so-called local alignment in an algorithm due
to Smith and Waterman [69]. Local alignment aims at identifying the best pair
of regions, one from each sequence, such that the optimal (global) alignment
of these two regions is the best possible. This relies on a scoring scheme that
maximizes a similarity score because otherwise an empty alignment would
always yield the smallest distance. Naively, the algorithm to compute a local
alignment would need to inspect every pair of regions and apply a global
alignment algorithm to it. The critical idea of Smith and Waterman was
to offer the maximization in each cell of the matrix a fourth alternative: a
zero to signify the beginning of a new alignment. After filling the dynamic
programming matrix according to this scheme, backtracking starts from the
cell in the matrix that contains the largest value.

Upon comparing a dot plot and a local alignment one might notice regions
of similarity visible in the dot plot, but missing in the alignment. While in
many cases there exist gap penalty settings that would include all interest-
ing matching regions in the alignment, generally it requires the comparison
with the dot plot to notice possible misses. This problem is remedied by
an algorithm due to Waterman and Eggert [82] which computes suboptimal,
local and nonoverlapping alignments. It starts with the application of the
Smith-Waterman algorithm, i.e. a dynamic programming matrix is filled
and backtracking from the matrix cell with the largest entry yields the best
local alignment. Then the algorithm proceeds to delineate a second-best
local alignment. Note that this cannot be obtained by backtracking from the
second-best matrix cell. Such an approach would yield an alignment largely
overlapping the first one and thus containing little new information. Instead,
those cells in the dynamic programming matrix are set to zero from where
backtracking would lead into the prior alignment. This can be regarded as
“resetting” the dynamic programming matrix after having deleted the first
alignment. Then the second best alignment is identified by looking for the
maximal cell in the new matrix and starting backtracking from there. Iteration
of this procedure yields one alternative, nonoverlapping alignment after the
other in order of descending quality. Application of this algorithm avoids
possibly missing matching regions because even under strong gap penalties
the procedure will eventually show all matching regions.
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There is an interesting interplay between parameters, particularly the gap
penalty, and the algorithmic variant used. Consider a pair of sequences whose
similar regions can in principle be strung together into an alignment. Under
a weak gap penalty the Smith—-Waterman algorithm has a chance to identify
this entire alignment. On the other hand, not knowing about the similarity
between the sequences ahead of time, a weak gap penalty might also yield
all kinds of spurious aligned regions. The Waterman-Eggert algorithm is a
valid alternative. The gap penalty can be chosen fairly stringently. The first
(i.e. the Smith-Waterman) alignment will then identify only the best-matching
region out of all the similar regions. By iterating the procedure, though, this
algorithm will successively identify the other similar regions as well. For a
detailed discussion of these issues, see Vingron and Waterman [79].

3 Database Searching I: Single-sequence Heuristic Algorithms

This section takes a first look at the problem of identifying those sequences in
a sequence database that are similar to a given sequence. This task arises, for
example, when a gene has been newly sequenced and one wants to determine
whether a related sequence already exists in a database. Generally, two
settings can be distinguished. The starting point for the search may either
be a single sequence, with the goal of identifying its relatives, or a family
of sequences, with the goal of identifying further members of that family.
Searching through a database needs to be fast and sensitive, but the two
objectives contradict each other. Fast methods have been developed primarily
for searching with a single sequence and this will be the topic of this section.

When searching a database with a newly determined DNA or amino acid
sequence — the so-called query sequence — the user typically lacks knowledge
of whether an expected similarity might span the entire query or just part of
it. Likewise, they will be ignorant of whether the match will extend along
the full length of some database sequence or only part of it. Therefore, one
needs to look for a local alignment between the query and any sequence in the
database. This immediately suggests the application of the Smith—-Waterman
algorithm to each database sequence. One should take care, though, to apply
a fairly stringent gap penalty such that the algorithm focuses on the regions
that really match. After sorting the resulting scores the top scoring database
sequences are the candidates of interest.

Several implementations of this procedure are available, most prominently
the SSEARCH program from the FASTA package [63]. There exist implemen-
tations of the Smith—-Waterman algorithm that are tuned for speed like one
using special processor instructions [85] and, among others, one by Barton [9].

65



66

3 Sequence Alignment and Sequence Database Search

Depending on implementation, computer and database size, a search with
such a program takes on the order of 1 min.

The motivation behind the development of other database search programs
has been to emulate the Smith—-Waterman algorithm’s ability to discern related
sequences while at the same time performing the job in much less time. To
this end, one usually makes the assumption that any good alignment that one
wishes to identify contains, in particular, some stretch of ungapped similarity.
Furthermore, this stretch will tend to contain a certain number of identically
matching residues and not only conservative replacements. Based on these
assumptions, most heuristic programs rely on identifying a well-matching
core and then extending it or combining several of these. With hindsight,
the different developments in this area can further be classified according to a
traditional distinction in computer science by which one either preprocesses
the query or the text (i.e. the database). Preprocessing means that the string
is represented in a different form that allows for faster answers to particular
questions, e.g. whether the string contains a certain subword.

The FASTA program (part of a package [63] that usually goes by the same
name) sets a size k for k-tuple subwords. For DNA sequences, the parameter
k might typically be set to 7, while for amino acid sequences 2 would be a
reasonable choice. The program then looks for diagonals in the comparison
matrix between the query and search sequence along which many k-tuples
match. This can be done very quickly based on a preprocessed list of k-tuples
contained in the query sequence. The set of k-tuples can be identified with
an array whose length corresponds to the number of possible tuples of size
k. This array is linked to the indices of the positions at which the particular
k-tuples occur in the query sequence. Note that a matching k-tuple at index
i in the query and at index j in the database sequence can be attributed to a
diagonal by subtracting one index from the other. Therefore, when inspecting
a new sequence for similarity one walks along this sequence inspecting each
k-tuple. For each of them one looks up the indices of the positions at which
it occurs in the query, computes the index-difference to identify the diagonal
and increases a counter for this diagonal. After inspecting the search sequence
in this way a diagonal with a high count is likely to contain a well-matching re-
gion. In terms of the execution time, this procedure is only linear in the length
of the database sequence and can easily be iterated for a whole database. Of
course this rough outline needs to be adapted to focus on regions where the
match density is high and link nearby, good diagonals into alignments.

The other widely used program to search a database is called BLAST [1,3].
BLAST follows a similar scheme in that it relies on a core similarity, although
with less emphasis on the occurrence of exact matches. This program also
aims at identifying core similarities for later extension. The core similarity is
defined by a window with a certain match density on DNA or with an amino
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acid similarity score above some threshold for proteins. Independent of the
exact definition of the core similarity, BLAST rests on the precomputation of
all strings which are similar in the given sense to any position in the query. The
resulting list may contain on the order of 1000 or more words, each of which if
detected in a database gives rise to a core similarity. In BLAST nomenclature
this set of strings is called the neighborhood of the query. In fact, the code to
generate this neighborhood is exceedingly fast.

Given the neighborhood, a finite automaton is used to detect occurrences
in the database of any string from the neighborhood. This automaton is a
program constructed “on the fly” and specifically for the particular word
neighborhood that has been computed for a query. Upon reading through
a database of sequences, the automaton is given an additional letter at a
time and decides whether the string that ends in this letter is part of the
neighborhood. If so, BLAST attempts to extend the similarity around the
neighborhood and if this is successful reports a match.

As with FASTA, BLAST has also been adapted to connect good diagonals
and report local alignments with gaps. BLAST converts the database file into
its own format to allow for faster reading. This makes it somewhat unwieldy
to use in a local installation unless someone takes care of the installation.
FASTA, however, is slower, but easier to use. There exist excellent web
servers that offer these programs, in particular at the National Center for
Biotechnology Information [43] and at the European Bioinformatics Institute
[41] where BLAST or FASTA can be used on up-to-date DNA and protein
databases.

According to the above-mentioned distinction among search methods into
those that preprocess the pattern and those that preprocess the text, there
also is the option of transforming a DNA or amino acid database such that it
becomes easier to search. This route was taken, for example, by a group from
IBM developing the FLASH [14] program. They devised an intricate, although
supposedly very space-consuming technique of transforming the database
into an index for storing the offsets of gapped k-tuples. The QUASAR pro-
gram by Burkhard and coworkers [13] preprocesses the database into a so-
called suffix array, similar to a suffix tree, yet simple to keep on disk. Pro-
grams in practical use for quickly searching entire genomes are BLAT [50] and
SSAHA [61].

With the availability of expressed sequence tags (ESTs) it has become very
important to match DNA sequence with protein sequence in such a way that a
possible translation can be maintained throughout the alignment. Both FASTA
and BLAST packages contain programs for this and related tasks. When
coding DNA is compared to proteins, gaps are inserted in such a way as
to maintain a reading frame. Likewise, a protein sequence can be searched
versus a DNA sequence database. The search of DNA versus DNA with an
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emphasis on matching regions that allow for a contiguous translation is not so
well supported. Although a dynamic programming algorithm for this task is
feasible, the existing implementation in BLAST compares all reading frames.

4 Alignment and Search Statistics

Alignment score is the product of an optimization, mostly a maximization
procedure. As such it tends to be a large number sometimes suggesting
biological relatedness where there is none. In pairwise comparisons the user
still has a chance to study an alignment by eye in order to judge its validity;
however, upon searching an entire database automatic methods are necessary
to attribute a statistical significance to an alignment score.

In the early days of sequence alignment, the statistical significance of the
score of a given pairwise alignment was assessed using the following pro-
cedure. The letters of the sequences are permuted randomly and a new
alignment score is calculated. This is repeated roughly 100 times, and the
mean and standard deviation of this sample are calculated. The significance
of the given alignment score is reported in “number of standard deviations
above the mean”, also called the Z-score. Studying large numbers of random
alignments is correct, in principle. However, the significance of the alignment
should then be reported as the fraction of random alignments that score better
than the given alignment. The procedure described assumes that these scores
are distributed normally. Since the random variable under study — the score of
an optimal alignment — is the maximum over a large number of values, this is
not a reasonable assumption. In fact, the lack of fit quickly becomes obvious
when trying to fit a normal distribution to the data. The second argument
against this way of calculating significance is a pragmatic one: the procedure
needs to be repeated for every alignment under study because the effect of the
sequence length cannot be accounted for.

Based on the work of several researchers [48, 70], it has meanwhile be-
come apparent that alignment score as well as scores from database searches
obey a so-called extreme-value distribution. This is not surprising given that
extreme-value distributions typically describe random variables that are the
result of maximization. In sequence alignment, there are analytical results
confirming the asymptotic convergence to an extreme-value distribution for
the case of local alignment without gaps, i.e. the score of the best-matching
contiguous diagonal in a comparison [18]. This is also a valid approximation
to the type of matching effected in the database search program BLAST. Thus,
this approach has become widely used and, in fact, has contributed signif-
icantly to the popularity of database search programs because significance
measures have made the results of the search much easier to interpret.
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The statistical significance of an event like observing a sequence alignment
of a certain quality is the probability to observe a better value as a result of
chance alone. This quantity is refereed to as the p-value. For example, a p-
value of 1073 is interpreted as expecting to see an excess of the given threshold
in one in a 1000 experiments. To compute this one needs to model chance
alignments, which is precisely what the statistician means by deriving the
distribution of a random variable. The probability that a chance result would
exceed an actually obtained threshold S is 1 minus the value of the cumulative
distribution function evaluated at that threshold. In sequence alignment, this
cumulative distribution function is generally expressed as [48]:

exp(mnke*S)

where m and n are the lengths of the sequences compared, and K and A
are parameters which need to be computed (where possible) or derived by
simulation. K and A depend on the scoring matrix used (e.g. the PAM120
matrix) and the distribution of residues. Hence, for any scoring system these
parameters are computed beforehand and the statistical significance of an
alignment score S is then computed by evaluating the formula with the length
of the two sequences compared.

The most prominent case for which the parameters K and A can be defined
analytically is local alignment without gaps. Algorithmically this amounts to
computing a Smith—-Waterman alignment under very high gap penalties such
that the resulting alignment will simply not contain any gaps. Since this no-
tion of alignment also guides the heuristic used by the BLAST database search
program, the resulting statistical estimates are primarily used in database
searching. In this application, one of the lengths is the length of the input
sequence and the other length can be chosen on the order of the length of
the concatenated sequences from the database that is being searched. Al-
ternatively, one can think of the database search as a repetition of many
individual pairwise comparisons, which amounts to repeating the experiment
“sequence comparison” many times. In this setting, the number of false
positives one expects to find can be determined as the product of the p-
value of the individual comparison and the number of times the experiment is
repeated, i.e. the number of sequences in the database. This expected number
of false positives is referred to as the E-value. A typical E-value threshold for
a database search would be, for example, 1, indicating that the score cutoff is
chosen such that among the sequences faring better than the cutoff one expects
to find one false-positive hit.

When gaps are allowed, the determination of K and A is more complex be-
cause an approximation of the distribution function of alignment score by an
extreme-value distribution as above is not always valid. Generally speaking, it
is allowed only for sufficiently strong gap penalties where alignments remain
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compact as opposed to spanning the entire sequences. Under sufficiently
strong gap penalties, though, it has been demonstrated that the approximation
is indeed valid just like for infinite gap penalties [79]. However, it is not pos-
sible any more to compute the values of the parameters K and A analytically.
As a remedy one applies simulations in which many alignments of randomly
generated sequences are computed and the parameters are determined based
on fitting the empirical distribution function with an extreme-value distri-
bution [83]. As in the case above, this procedure allows for determining
parameters beforehand and computing significance by putting the lengths of
the sequences into the formula.

The question remains of how to determine whether approximation by an
extreme-value distribution is admissible for a certain scoring scheme and
gap penalty setting one is using. This can be tested on randomly generated
(or, simply, unrelated) sequences by computing a global alignment between
sequences under that particular parameter setting. If the result has a negative
sign (averaged over many trials or on very long random sequences), then
the approximation is admissible. This is based on a theorem due to Arratia
and Waterman [6], and subsequent simulation results reported by Waterman
and Vingron [84]. In particular, a gap open penalty of 12 with an extension
penalty of 2 or 3 for the case of the PAM250 matrix, as well as any stronger
combination, allows for approximation by the extreme-value distribution.

In database searching the fitting need not be done on randomly generated
sequences. Under the assumption that the large majority of sequences in a
database are not related to the query, the bulk of the scores generated upon
searching can be used for fitting. This approach is taken by Pearson in the
FASTA package. It has the advantage that the implicit random model is more
realistic since it is taken directly from the data actually searched. Along a
similar line of thought, Spang and Vingron [72] tested significance calculations
in database searching by evaluating a large number of search results. Their
study showed that one should not simply use the sum of the lengths of all
the sequences in the database as the length parameter in the formula for the
extreme-value distribution. This would overestimate the length that actually
governs the statistics. Instead, a considerably shorter effective length can
determined for a particular database using simulations. This effect is probably
due to the fact that alignments cannot start in one sequence and end in the
next one, which makes the number of feasible starting points for random
alignments smaller than the actual length of the database.
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For many genes a database search reveals a whole number of homologous
sequences. Then, one wishes to learn about the evolution and the sequence
conservation in such a group. This question surpasses what can reasonably
be achieved by the sequence comparison methods described in Section 3.
Pairwise comparisons do not readily exhibit positions that are conserved
among a whole set of sequences and tend to miss subtle similarities that
become visible when observed simultaneously among many sequences. Thus,
one wants to simultaneously compare several sequences.

A multiple alignment arranges a set of sequences in a scheme such that po-
sitions believed to be homologous are written in a common column (Figure 4).
As in a pairwise alignment, when a sequence does not possess an amino acid
in a particular position, this is denoted by a dash. There also are conventions
similar to the ones for pairwise alignment regarding the scoring of a multiple
alignment. The so-called sum-of-pairs (SOP) [2] score adds the scores of all the
induced pairwise alignments contained in a multiple alignment. For a linear

Figure 4 Example of a multiple sequence alignment: an alignment of
amino acid sequences of myoglobins and hemoglobins from a number
of species. Each sequence begins in the top block and continues in
the bottom block. The color code indicates physicochemical attributes
of amino acids. The bar diagram below the alignment quantifies the
degree of conservation in the column above.
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gap penalty this amounts to scoring each column of the alignment by the sum
of the amino acid pair scores or gap penalties in this column. Although it
would be biologically meaningful, the distinctions between global, local and
other forms of alignment are rarely made in a multiple alignment. The reason
for this will become apparent below when we describe the computational
difficulties in computing multiple alignments.

In general, the columns of a multiple alignment cannot be determined based
on the set of all pairwise alignments. Quite the contrary, pairwise alignments
may contradict each other in that one set of alignments opts to place, say,
residue a from sequence i in one column with residue b from sequence j,
while from another set of pairwise alignments it may follow that a should
be in one column with another letter ¢ from sequence j. If one wishes to
assemble a multiple alignment from pairwise alignments one has to avoid
“closing loops”, i.e. one can put together pairwise alignments as long as no
new pairwise alignment is included involving a sequence which is already
part of the multiple alignment. In particular, pairwise alignments can be
merged when they align one sequence to all others, when a linear order of the
given sequences is maintained or when the sequence pairs for which pairwise
alignments are given form a tree. While all these schemes allow for the ready
definition of algorithms that output multiply aligned sequences, they do not
include any information stemming from the simultaneous analysis of several
sequences.

An alternative approach is to generalize the dynamic programming opti-
mization procedure applied for pairwise alignment to the delineation of a
multiple alignment that maximizes, for example, the SOP score. The algo-
rithm used [80] is a straightforward generalization of the global alignment
algorithm. This is easy to see, in particular, for the case of the column-oriented
SOP scoring function avoiding an affine gap penalty in favor of the simpler
linear one. With this scoring, the arrangement of gaps and letters in a column
can be represented by a Boolean vector indicating which sequences contain
a gap in a particular column. Given the letters that are being compared, one
needs to evaluate the scores for all these arrangements. However conceptually
simple this algorithm may be, its computational complexity is rather forbid-
ding. For n sequences it is proportional to 2" times the product of the lengths
of all sequences. The space requirement of this algorithm is on the order of the
product over the lengths of the n sequences, which constitutes an even greater
obstacle to its practical application.

There exists software to compare three sequences with this algorithm that
additionally implements a space-saving technique [46]. For more than three
sequences, algorithms have been developed that aim at reducing the search
space while still optimizing the given scoring function. The most prominent
program of this kind is MSA2 [25,44]. An alternative approach is used by DCA
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[36, 73], which implements a “divide-and-conquer” philosophy. The search
space is repeatedly subdivided by identifying anchor points through which
the alignment is highly likely to pass.

However, none of these approaches scales well to large numbers of se-
quences to be aligned. The most common remedy is reducing the multiple
alignment problem to an iterated application of the pairwise alignment al-
gorithm. However, in doing so, one also aims at drawing on the increased
amount of information contained in a set of sequences. Instead of simply
merging pairwise alignments of sequences, the notion of a profile [24] has
been introduced in order to grasp the conservation patterns within subgroups
of sequences. A profile is essentially a representation of an already computed
multiple alignment of a subgroup of sequences. This alignment is “frozen”
for the remaining computation. Other sequences or other profiles can be
compared to a given profile based on a generalized scoring scheme defined
for this purpose. The advantage of scoring a sequence versus a profile over
scoring individual sequences lies in the fact that the scoring schemes for
profile matching reflect the conservation patterns among the already aligned
sequences. (Profiles are discussed in more detail in Chapter 11.)

Given a profile and a single sequence, the two can be aligned using the basic
dynamic programming algorithm together with the accompanying scoring
scheme. The result will be an alignment between sequence and profile that can
readily be converted into a multiple alignment now comprising the sequences
underlying the profile plus the new one. Likewise, two profiles can be aligned
with each other, resulting in a multiple alignment containing all sequences
from both profiles. Various multiple alignment strategies can be implemented
with these tools. Most commonly, a hierarchical tree is generated for the given
sequences, which is then used as a guide for iterative profile construction
and alignment. This alignment strategy is called “progressive”, and was
introduced in papers by Taylor [76], Corpet [16] and Higgins [28]. Higgins’
program Clustal [42] and, in particular, its latest version ClustalW are proba-
bly the most widely used programs for multiple sequence alignment [47]. Two
recent variants of progressive alignment are MUSCLE [21] and PROBCONS
[19]. Other programs in practical use are the MSA2 program and DCA. Lee
and coworkers [54] developed a program that focuses on fast alignment of
highly similar sequences, e.g. ESTs, using an algorithm termed partial order
alignment.

Progress has been made also on the problem of local multiple alignment.
The algorithm behind the Dialign [37,56] program relies on collecting local
similarities among all pairs of sequences and then assembles those into multi-
ply aligned regions. Similarly, T-Coffee [62] allows for inclusion of both local
and global alignments, as well as other possible information like structural
similarity, and merges those consistently into a multiple alignment.
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Since iterative profile alignment tends to be guided by a hierarchical tree,
this step of the computation also influences the final result. Usually the
hierarchical tree is computed based on pairwise comparisons and their re-
sulting alignment scores. Subsequently, this score matrix is used as input to
a clustering procedure like single linkage clustering or UPGMA (unweighted
pair group method with arithmetic mean) [74]. However, it is well under-
stood that in an evolutionary sense such a hierarchical clustering does not
necessarily result in a biologically valid tree. Thus, when allowing this tree
to determine the multiple alignment there is the danger of pointing further
evolutionary analysis of this alignment in the wrong direction. Consequently,
the question has arisen of a common formulation of evolutionary reconstruc-
tion and multiple sequence alignment. The cleanest, although biologically
somewhat simplistic, model attempts to reconstruct ancestral sequences to
attribute to the inner nodes of a tree [65]. Such reconstructed sequences at
the same time determine the multiple alignment among the sequences. In
this “generalized tree alignment” one aims at minimizing the sum of the
edge lengths of this tree, where the length of an edge is determined by
the alignment distance between the sequences at its incident nodes. As to
be expected, the computational complexity of this problem again makes its
solution unpractical. The practical efforts in this direction go back to the work
of Sankoff [65,66]. Hein [26] and Schwikowski and Vingron [68] produced
software [38,40] relying on these ideas.

With the increased interest in analysis of regulatory regions in DNA, the
problem of finding subtle local similarities, in particular in DNA sequences,
has received much interest. Many programs for the detection of common
sequence motifs use probabilistic modeling and/or machine learning ap-
proaches. In particular, the mathematical technique of the Gibbs sampler has
lent its name also to a motif-finding program, the Gibbs Motif Sampler [31,53].
Bailey and Elkan [7] designed the MEME [33] program which relies on an
expectation maximization algorithm. A number of pattern-finding programs
have been compared by Tompa and coworkers [78].

6 Multiple Alignments, Hidden Markov Models (HMMs)
and Database Searching Il

Information about which residues are conserved and thus important for a
particular family is crucial not only for the purpose of multiply aligning a
set of sequences, but is also very valuable in the context of identifying related
sequences in a database. A multitude of methods has been developed that aim
at identifying sequences in a database which are related to a given family. The
first one was the notion of a profile that was described above and was actually
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introduced in the context of database searching. As in multiple alignment,
profiles help in emphasizing conserved regions in a database search. Thus, a
sequence that matches the query profile in a conserved region will receive a
higher score than a database sequence matching only in a divergent part of
an alignment. This feature is of enormous help in distinguishing truly related
sequences.

Algorithmically, profile searching simply uses the dynamic programming
alignment algorithm for aligning a sequence to a profile on each sequence
in the database. Of course, this is computationally quite demanding and
much slower than the heuristic database search algorithms like BLAST or
FASTA. Typically, the multiple alignment underlying the profile describes a
conserved domain which one expects to find within a database sequence.
Therefore, in this context, it is important that end gaps should not be penal-
ized. Furthermore, gap penalties for profile matching frequently vary along
the profile in order to reflect the existence of gaps within the underlying
multiple alignment. Through this mechanism one attempts to allow new gaps
preferentially in regions where gaps have been observed already. However,
different suggestions exist as to the choice and derivation method for these
gap penalties [77].

In 1994, Haussler and coworkers [52] and Baldi and coworkers [8] intro-
duced HMMs for the purpose of identifying family members in a database.
An HMM is a generative probabilistic model in the sense that we can think
of it as a machine that generates strings of symbols; in biological applications,
typically the letters of a biological sequence. It has “states” and each state
will output a symbol according to a distribution associated to this state.
After a state has output a symbol, a transition to one of its successor states
occurs according to a specified transition probability. These transitions are
Markovian, meaning that the transitions leading out of a state are governed
only by this state’s transition probabilities and not by how the machine got to
arrive in this state. The “hidden” element in the HMM comes from the image
that an observer gets to see the generated symbol series and then needs to
infer which series of states gave rise to it or what the underlying distributions
might look like. HMMs and related algorithms are discussed in depth by
Durbin and coworkers [20].

The structure of a profile HMM mimics a multiple alignment. We think of
it as a machine that emits a sequence which would typically be randomly
drawn based on a given multiple alignment, according to the distribution of
letters in its columns. If gaps were forbidden, the emitted sequence would
essentially draw one letter from each column of the alignment. Insertions and
deletions, however, imply that the generated sequence may differ in length
from the multiple alignment, with some columns possibly skipped or new
letters inserted in the emitted sequence. Figure 5 schematically shows the



76 | 3 Sequence Alignment and Sequence Database Search

Ca Ca Qi

Tk T T2
A A 4
|- [ - »
Mk "1 M "1 Mo g
D g D+ I

Figure 5 Sketch of the structure of a profile HMM.

states and transitions that realize this structure. The middle row represents a
series of match states (M). These represent the columns of the given alignment
and emit letters according to a distribution that is supposed to fit the corre-
sponding column of the alignment. A transition into an insert state (denoted
I, arranged in the top row) lets the machine emit an additional letter, with the
possibility of remaining in this insert state and emitting more additional letters
as indicated by the self-loop at the insert nodes. The transition from a match
state into a delete state (D, bottom row) leads to the emitted sequence skipping
one or more of the following columns of the alignment, which corresponds to
a deletion in the emitted sequence with respect to the alignment.

In this manner, the profile HMM can output sequences which, by way of
their generating state sequence, are aligned relative to the given multiple
alignment. The task of aligning a sequence to a profile HMM can therefore
be phrased in the probabilistic setting of “What is the most likely sequence of
states to have given rise to this sequence?”. This is solved by the so-called
Viterbi algorithm, which largely resembles the classical dynamic program-
ming sequence alignment algorithm in its structure. Alternatively, one can
ask for the probability of the observed sequence as such, independent of
which path generated it. This is computed by summing over the different
state sequences that could have produced the sequence. Here, the fully
probabilistic formalization is superior to an ad hoc score definition which
would not allow for posing and answering this question. Algorithmically, this
summation can be computed efficiently by the so-called forward algorithm.

There is a standard learning algorithm, the Baum-Welch algorithm, to
determine emission and transition probabilities of an HMM given a set of
learning data. When training a profile HMM, one has the sequences of the
multiple alignment at hand, which may be too small a set for parameter
determination in many cases. The problem becomes manageable, though,
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when one uses the residue distributions in the columns as a guideline for
the emission probabilities and chooses the transition probabilities to reflect, in
essence, the way gaps should be handled. Adding a possible correction (the
“pseudocounts”) for sampling artifacts, this choice of parameters can either be
used directly or as a starting configuration for a subsequent application of the
Baum-Welch algorithm in order to refine parameter estimation. Nevertheless,
training an HMM is a very difficult problem and the Baum-Welch algorithm
may only find a local optimum.

The first application of HMMs in sequence analysis seems to be due to
Churchill [15], who applied the technique to the segmentation of sequences
based on their composition. Profile HMMs followed later, addressing the
same problem as multiple alignment profiles. A widely used implementation
of profile HMMs is the HMMER package [32]. The two concepts of HMMs
and profiles are formally very similar, although set in a different language.
Bucher and Karplus [12] introduced generalized profiles, and showed that
the two concepts are equally powerful in their abilities to model sequence
families and detect related sequences. Nevertheless, due to the coherent
probabilistic description language and a broad spectrum of good software
implementations, HMMs have found widespread acceptance. Many other
areas in computational molecular biology, e.g. gene finding, have also profited
greatly from the introduction of HMMs.

The fact that a profile or HMM can pick out new sequences also related to
the given family suggests that these should be used to update the profile or
HMM used as search pattern. This idea leads to iterative search algorithms
which search the database repeatedly, each time updating the query pattern
with some or all of the newly identified sequences. PSI-BLAST [3] is a very
successful implementation of this idea. It starts with a single sequence, and
after the first search constructs profiles from conserved regions among the
query and newly identified sequences. Without allowing for gaps (to increase
search speed) these new profiles are used to repeat the search. Generally, PSI-
BLAST quickly converges after updating these profiles again and generally is
very successful in delineating all the conserved regions a sequence may share
with other sequences in a database. In the realm of HMMs, SAM is a very
careful implementation of the idea of iterated searches [39, 49].

It is the generally held view that searching a database with a profile or
HMM produces extreme-value distributed random scores just like single-
sequence database searching. The quality of the fit to the extreme-value
distribution may, however, depend on the particular given alignment. This
has been substantiated with mathematical arguments only for the case of
ungapped profile matching [22]. Nevertheless, this basic understanding of
the statistical behavior of database-matching methods is a crucial element
of iterative search programs. Without clear and reliable cutoff values one
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could not decide which sequences to integrate into the next search pattern
and would run the danger of including false positives, thus blurring the
information in the pattern.

Both single-sequence search methods and profile/HMM-based methods
have been thoroughly validated during recent years [11]. Databases of struc-
turally derived families, e.g. SCOP [34,58], have made it possible to search
a sequence database with a query, and exactly determine the number of false
positives and false negatives. For every search one determines how many
sequences one misses (false negatives) in dependence of the number of false
positive matches. If the sequence statistics is accurate, the number of false
positives correlates well with the E-value, i.e. the number of false positives
expected by chance. This way of validating search methods allows for making
objective comparisons and for determining how much quality one actually
gains with slower methods over faster, less accurate methods.

7 Protein Families and Protein Domains

The companion question to the one that assigns related sequences from a
database to a given query sequence or family is the question that tries to
assign to a query sequence the family of which it is a member or the domains
that it contains. One resource for this purpose is the InterPro database [4],
which contains amino acid patterns that are descriptive for particular do-
mains, families or functions. The InterPro database summarizes information
from several other motif databases including, among others, Prosite [30] and
Pfam [10]. One can either scan a sequence against this database [86] or
rely on precomputed information that is stored along with the sequences in
the databases. The Pfam database contains precomputed HMMs for protein
domains. A query sequence can be matched against this library of HMMs in
order to identify known domains in the query sequence. Here, too, match
statistics plays a crucial role in order to determine the significantly matching
domains. A server that allows one to scan a sequence versus all Pfam domains
can be found at the Sanger center [45]. Software has also been developed to
recognize the Pfam HMMs in either coding DNA or in genomic DNA. In the
latter case, the program combines the HMM matching with the distinction
between coding and noncoding DNA.

Apart from finding and cataloguing domains of proteins, efforts have also
been made to structure the space of all protein sequences into homologous
groups or orthologous families. Linial and coworkers have developed the
Protonet [67] system, hierarchically structuring the set of all proteins. Krause
and coworkers [51] developed SYSTERS [35] to delineate protein families and
supply consensus sequences of these families to be searched with a DNA or
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protein query sequence. Koonin and coworkers put special emphasis on the
delineation of orthologous genes, and collect this information in the COG and
KOG databases [75].

8 Conclusions

The problems and methods introduced above have been instrumental in the
advance in our understanding of genome function, organization and struc-
ture. While some years ago human experts would check every program
output, nowadays sequence analysis routines are being applied in an auto-
matic fashion creating annotation that is included in various databases. This
holds true for similarity relationships among sequences and extends all the
way to the prediction of genomic structure or to function prediction based
on similarity. Although the quality of the tools has increased dramatically,
the possibility of error and, in particular, its perpetuation by further au-
tomatic methods exists. Thus, it is apparent that the availability of these
high-throughput computational analysis tools is a blessing and a problem at
the same time.
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Phylogeny Reconstruction
Ingo Ebersberger, Arndt von Haeseler, and Heiko A. Schmidt

1 Introduction

In 1973 Theodosius Dobzhansky said “Nothing in biology makes sense except
in the light of evolution” [27]. Although more than 30 years old, the citation
still remains valid. Biologists nowadays use the massive amount of sequence
data to infer the phylogenetic relationship of contemporary organisms. DNA,
long words over a finite alphabet of four nucleotides, is transmitted from one
generation to the next. The copying process and environmental factors lead
to an accumulation of mutations in the sequence. Such mutations manifest
themselves as slight changes in the DNA sequence, so-called substitutions.
The vertical transmission (in time) of DNA together with the discrete nature
of the mutations makes the molecule an ideal target to study phylogenetic
relationship of organisms. Consequently, sequence-based phylogenies of or-
ganisms have been determined from many different genes. Such gene-trees
have provided surprisingly new and sometimes controversial insights into
the evolutionary relationships of organisms. However, research and debates
still focus on the best methodology. That is, how do we measure similarity
or dissimilarity, how can we model the process of substitution, how can we
accurately infer the tree? Despite this ongoing discussion, molecular phyloge-
nies are nowadays a routine tool for biologists interested in the evolution of
organisms.

Moreover, the application of molecular phylogenies goes beyond the recon-
struction of phylogenetic trees for organisms. Gene trees or, more general,
sequence trees serve as an important source of information to understand how
sequences are related. From this relatedness it is then possible to infer the
function of an unknown sequence (see also Chapter 32). Not only function
can be inferred, but also structure can be deduced from trees (Chapter 11).
From sequence trees we can deduce the evolutionary history of the sequences
themselves. We can determine regions that are conserved or highly variable
and we can detect sequences that show a highly aberrant substitution pattern.
Moreover, we can detect duplications of genes or parts of the genome; thus,
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Figure 1 Phylogenetic relationships among a set of seven taxa
represented by a rooted (a) and an unrooted (b) tree.

trees serve as analytical tools in comparative genomics (Chapter 37). Even
the coevolution of host-pathogen interactions (Chapter 41) is mirrored in the
similarity of trees from both groups.

Again, the conclusions strongly depend on the accuracy of the reconstruc-
tion method. To critically evaluate the result a basic understanding of the
different approaches to phylogenetic inference is required. In this chapter we
present a very basic introduction. We set the stage by a brief introduction in
the terminology, followed by a summary about current approaches to model
evolutionary changes (Section 2). Section 3 describes the three fundamen-
tal principles of phylogenetic inference, i.e. maximum parsimony, distance-
based and maximum likelihood (ML) inference. The subsequent section deals
with the optimization problem of finding the "best" tree(s) with respect to
some objective function. With the advent of phylogenomics one wants to
reconstruct a species tree from a collection of multiple genetic loci. This
question leads naturally to supertree methods introduced in Section 5. Finally,
Section 6 summarizes attempts to infer evolutionary relationships if the data
do not evolve according to a tree. Processes like horizontal gene transfer or
recombination destroy the tree-likeness of the data. In such instances it is
better to reconstruct networks rather then trees.

1.1 Reconstructing a Tree from its Leaves

The fundamental axiom in evolutionary biology is the assumption that any
two taxa share a common ancestor at some time point in their history. Thus,
following backward in time the lineages along which these taxa have evolved,
they will eventually coalesce. Considering a large set of taxa, consecutive
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coalescent events result in an ever-decreasing number of predecessors until
only two lineages remain. The ancient taxon in which these lineages even-
tually merge then represents the most recent ancestor common to all taxa
in the dataset. The correspondence to a tree is apparent and it is therefore
of little surprise that trees play the key role in phylogenetic research. The
dominant role of trees in the area of phylogeny reconstruction is already man-
ifested in the phylogeneticist’s vocabulary (Figure 1). Contemporary taxa are
dubbed leaves, leaves are connected via external branches to internal nodes (their
common ancestors) and internal nodes themselves are connected via internal
branches. Nodes that give rise to two descendants are termed bifurcations,
nodes with a larger number of descendants are referred to as multifurcations
(Biologists usually judge it as unlikely that three or more lineages emerged
at precisely the same time from a shared ancestor; thus, we will concentrate
on bifurcating trees.) Eventually, if the direction of the evolutionary process
is known the ancestor of all leaves in the tree is identified. To stay in the
picture, this node is termed the root. If directional information is not available,
the relationships of the taxa is represented in an unrooted tree. However, in
this case the temporal succession of ancestors remains undetermined. The
reconstruction of the phylogenetic relationships for a set of taxa and their
representation by a tree can be separated into two subproblems. (i) What
is the order individual taxa split from their shared ancestors, i.e. what is
the topology of the tree? (ii) What is the evolutionary time that has passed
since any two taxa last shared a common ancestor, i.e. how long are the
corresponding branches of the tree? In most cases no hard evidence (such as
a comprehensive fossil record) exists to directly reconstruct the evolutionary
steps transforming one ancestral taxon into its descendants. Rather, we get
hold only of the end-points of this process and are more or less ignorant about
anything that has happened in the past. Thus, we are facing the problem of
reconstructing the phylogenetic tree just by looking at its leaves.

1.2 Phylogenetic Relationships of Taxa and their Characters

Although one is typically interested in the relationships of the taxa, the re-
construction procedure is usually not based on the taxon as a whole. For
practical reasons one vicariously concentrates on individual characteristics
of these taxa, usually either morphological or molecular features. We will
refer to such representative characteristics as characters and to their peculiar
expression in the individual taxa as the character state.

To collect the raw data for phylogenetic analyses, the variety of states for
a particular character in a set of taxa has to be assessed first. Next, the
possible transformations of the character states during evolution has to be
reconstructed, which can then be used for phylogenetic inference. Irrespective
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of what type of character has been chosen, two general approaches can be
followed to trace the phylogenetic signal in the data. One can identify those
(evolutionary novel) character states that are shared among a subset of the
taxa. Such a congruency is interpreted as a result of shared descent [68].
Based on the pattern and extent of congruent character states, the degrees of
relationships among the taxa can then be inferred. Alternatively, the extent
of evolutionary change for the particular character between any pair of taxa
can be assessed. From the resulting pairwise evolutionary distances again a
phylogenetic tree can be reconstructed. We will outline both approaches in
greater detail below (Section 3). Eventually, the evolutionary history of the
particular character is extrapolated to the taxon level.

Inherent to any character-based strategy for phylogeny reconstruction is
the assumption that comparisons are performed only between homologous
characters, i.e. characters related by descent. Although the assignment of
homology constitutes one of the major issues in evolutionary studies [68,114,
134], we will take for granted that this postulation is met.

1.2.1 The Problem of Character Inconsistencies

To date, tree reconstruction is frequently based on more than only a single
character. This adds the advantage that different characters can complement
each other by adding resolution to different parts of the tree. However,
the reverse effect occurs as well: trees reconstructed from different charac-
ters can disagree. Given that incompatible groupings of taxa are supported
significantly by the respective data, two alternative explanations are pos-
sible. First, the incompatible groupings are based on a misinterpretation
of the data. For example, taxa can share the same character state not due
to a shared ancestry, but rather because the particular state arose indepen-
dently at least twice during evolution. Phylogeny reconstruction methods
that model the evolutionary process (see Sections 3.2 and 3.3) usually account
for this problem. However, if such parallel, convergent or back mutations
remain unrecognized (or are neglected) an erroneous tree reconstruction is
possible. In the second explanation, the evolution of each character state is
correctly reconstructed. Such genuine discrepancies between inferred trees
have various causes. Among the most frequently stated are processes like the
random sorting of ancestral polymorphisms (e.g. Ref. [130]) and horizontal
gene transfer [25,28,91] (Figure 2). If one is suspicious that either of these
scenarios could apply, several independently evolving characters should be
analyzed. The most frequently observed tree is then usually the tree reflecting
the evolutionary relationships of the taxa as a whole. Alternatively, if it seems
appropriate to visualize such discrepant phylogenetic signals in the data, a
network rather than a tree can be chosen to represent the phylogeny of the
taxa (see Section 6).
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Figure 2 Trees for individual characters the lateral transfer of individual genes or
(inner trees) can differ from the species DNA sequences between species. Both
tree (outer trees). (a) The phylogenetic random sorting of ancestral polymorphisms
history of the character follows that of the and horizontal gene transfer can result in
species. (b) The random sorting of ancestral phylogenies that are incongruent to the
polymorphisms at subsequent speciation species tree or to trees reconstructed from
events. (c) Horizontal gene transfer, i.e. other characters.

1.2.2 Finding the Appropriate Character Set

In theory, phylogenetic relationships can be reconstructed from any set of
homologous characters subject to evolutionary change. Depending on the
scope of a study and the collection of taxa, however, certain types of characters
might be more suitable than others. Changes in shape, or morphology in
general, are the most conspicuous effects of evolution. Therefore, the field
of phylogeny reconstruction was dominated by the analysis of morpholog-
ical characters for a long time. However, with the expansion of molecular
biology the focus has shifted considerably. Initially, the immunological and
electrophoretic analysis of structural and electrical properties of proteins [85],
presence or absence of genomic features such as restriction enzyme recogni-
tion sites [47], or DNA-DNA hybridization [45, 137] were used to measure
the extent of character change on the molecular level. As time proceeded, the
presence and absence or linear order of regulatory elements and genes (see
also Chapter 8), and recently even expression data [83] have been employed
for phylogenetic inference. However, the most dominant role is still taken
by the direct comparison of biological sequences. Sequences change in the
course of time and any two sequences derived from a common ancestor
will diverge. The pattern and extent of differences between two related
sequences is then used to reconstruct their evolutionary history. Initially,
due to experimental constraints, the comparison of protein sequences was
prevalent. Nowadays, analyses rely almost entirely on DNA sequences and
even those studies comparing amino acid sequences usually derive these
from the corresponding DNA sequences. The advantages of DNA sequence
data are apparent. DNA sequences can be obtained with considerable ease
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from any taxon and even the comparison of entire genomes has now become
feasible. Allowing for some simplifications, each nucleotide position in the
DNA sequence can be regarded as an independently evolving character and
the number of possible states is strictly limited to the four bases: adenine
(A), guanine (G), cytosine (C) and thymine (T). Eventually, different DNA
sequences in a genome can evolve with different rates. This allows for easy
adaption of the dataset to the evolutionary time scale for which phylogenetic
resolution is required.

2 Modeling DNA Sequence Evolution

The substitution of nucleotides in a DNA sequence, i.e. the replacement of
one nucleotide by a different one, is usually considered a random event. As a
consequence, an important prerequisite for the reconstruction of phylogenetic
relationships among species is the prior specification of a model of substitution,
which provides a statistical description of DNA sequence evolution [97]. If we
consider the substitution of one nucleotide by another one at any given site in
a sequence as a random event and, furthermore, assume that a series of such
random events occurs during some time interval, then theses events form a
homogeneous Poisson process [37], if two very mild assumptions are met:

(i) The occurrence of a substitution in the time interval (¢, t;) is independent
of a substitution in another time interval (3, t4), where (t1,t,) and (3, t4)
do not overlap.

(ii) There is a constant @ > 0, such that for any time interval (t,t+h), h >
0 and h small, the probability that one event occurs is independent of ¢
and is proportional to uh. The probability that more than one substitution
occurs during (t,t + h) becomes vanishing small as & — 0.

The latter condition implies the so-called time homogeneity and, moreover, it
implies that the probability of one substitution is proportional to the length
of the time interval, i.e. the size of h. As substitutions are assumed to occur
spontaneously and independently from past or future substitutions, homoge-
nous Poisson processes are a simple approach to model the evolution of DNA.
Moreover, under conditions (1) and (2) the number of substitutions X () that
occur up to any arbitrary time ¢ is Poisson distributed with parameter ut [37].
Thus:

Pi(t) = [(ut)" exp(—ut)]/it, @)

is the probability that i = 0,1,2,... substitutions occur in the time interval
(0,t). On average, ut substitutions with variance pt are expected. Note
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that the parameters u (nucleotide substitutions per site per unit time) and ¢
(the time) cannot be estimated separately, but only through their product pt
(number of substitutions per site up to time f).

The nucleotide substitution process of DNA sequences described by the
Poisson process can be generalized to a so-called Markov process that uses a
rate matrix (typically called Q with elements Qy,), which specifies the relative
rates of change for each nucleotide. The most general form of the Q-matrix is
shown in Figure 3. Rows follow the order A, C, G and T so that, for example,
the second term of the first row is the instantaneous rate of change from base
A to base C. This rate is given by the frequency of base C (nc) times a relative
rate parameter, describing (in this case) how often the substitution A to C
occurs during evolution with respect to all other possible substitutions. Thus,
each nondiagonal entry in the matrix represents the flow from nucleotide x
to nucleotide y, while the diagonal elements are chosen to make the sum of
each row equal to zero. They represent the total flow that leaves nucleotide x.
Accordingly, we can write the total number of substitutions per unit time (i.e.
the total substitution rate ) as:

w=—Y Quny,xe {ACGT} @)

Models like the one summarized in Figure 3 belong to the general class of
time-homogenous time-continuous Markov models. When applied to model-
ing nucleotide substitutions, they share the following set of assumptions:

e The rate of change from x to y at any nucleotide position in a sequence is
independent of the nucleotide that occupied this position prior to x (Markov

property).

e Substitution rates do not change over time (homogeneity).

e The waiting time until the first substitution occurs follows a continuous
distribution (time continuity).

—(arc +brg + enr) anc brg T
_ gma —(gma + drg + ent) drg enT
Q= hma i —(hwa +ime + f7r) frr
iTa kwe Img —(jﬂA+/€7TC +l7‘rg)
Figure 3 Instantaneous rate matrix Q. rate one nucleotide is substituted by any
Each entry in the matrix represents the other nucleotide. mp, mc, TG, T correspond
instantaneous substitution rate from to the nucleotide frequencies. Diagonal
nucleotide x to nucleotide y (rows and elements are chosen such that each row

columns follow the order A, C, Gand T). ato! sums up to zero.
are rate parameters describing the relative
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Once the evolutionary model (and thus the Q-matrix) is specified, the proba-
bilities P(t) of change from one nucleotide to any other during evolutionary
time t is computed as follows:

P(t) = exp(Qt) . ©)

Each entry Py (t) of the resulting probability matrix P(t) specifies the proba-
bility to observe nucleotide y at time point ¢ if the original nucleotide at this
site was x.

2.1 Nucleotide Substitution Models

From the instantaneous substitution rate matrix Q in Figure 3 various sub-
models can be derived. Among these, the so-called stationary time-reversible
models are the ones most commonly used. These models introduce the
constraint that for any two nucleotides 7 and j the rate of change from i to j is
the same as from j to i (thus,a = g, b =h,c = j,d =i,e =1, f = | in Figure 3).
Under these conditions the values of ny (N = A, G, C,T) correspond to the
stationary frequencies of the four nucleotides, respectively (i.e. ©- Q = 0).
If all eight parameters of a reversible Q-matrix are specified separately, the
general time reversible model [92] is derived. The most simplest (fewest
number of parameter) model assumes that the equilibrium frequencies of the
four nucleotides are 0.25 each and that any nucleotide has the same rate to
be replaced by any other. These assumptions correspond to a Q-matrix with
A =Tc =7Gg =07 = 1/4,anda =b =c =d = e = f = 1. This resembles
the well-known Jukes-Cantor model [82]. An overview of the hierarchy of the
most common substitution models is shown in Figure 4.

2.2 Modeling Rate Heterogeneity

The nucleotide substitution models described so far implicitly assume that
the rate of nucleotide substitution is the same for any position in the DNA
sequence. However, it is well known that this is an oversimplification. For
example, substitutions occur at an about 10 times higher frequency at C
and G nucleotides when the C is followed by a G along the sequence [71].
Similarly, selective constraints maintaining functional DNA sequences result
in varying substitution rates along a DNA sequence. To account for such site-
dependent rate variations, a plausible model for the distribution of rates over
sites is required. Most commonly, a continuous probability distribution, the
I'-distribution with expectation 1 and variance 1/, is used [61]. By adjusting
the shape parameter o, the I'-distribution allows varying degrees of rate
heterogeneity (Figure 5). For a. > 1, the distribution is bell-shaped and models
weak rate heterogeneity among sites. For o < 1, the I'-distribution takes on
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(transitions vs.
transversions)
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1 substitution type, HKY85 ——— > TN93 ——— > GTR
equal base frequencies 3 subst. types 6 subst. types
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transversions)

F81
Figure 4 A hierarchy of the most commonly Hasegawa, Kishino and Yano (1985) [65];
used nucleotide substitution models. TN93: Tamura and Nei (1993) [149]; GTR:
JC69: Jukes and Cantor (1969) [82]; F81: general time reversible model [92]. Many
Felsenstein (1981) [42]; K2P: Kimura two- more models are possible and an extensive
parameter model (1980) [84]; HKY85: overview is given in Ref. [74].
3

. ‘ ‘ — T

0.5 1 1.5 2 2.5 3
Figure 5 Probability density functions of the I'-distribution for different
values of the shape parameter a.. The x-axis represents the relative
substitution rate r of a site.

a characteristic L-shape, which describes strong rate heterogeneity, i.e. some
sites have very high substitution rates, while the other sites are practically
invariable.

2.3 Codon Models
Heterogeneous substitution rates become a particular issue for DNA that

codes for proteins. Amino acid sites in a protein sequence are under differ-
ent selective constraints, depending on their relevance for the protein func-
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0 if x and y differ at two or three nucleotide positions
Ty if z and y differ by one synonymous transversion
oy = KTy if 2 and y differ by one synonymous transition

Wl L)wy if z and y differ by one nonsynonymous transversion
W™k, ifw and y differ by one nonsynonymous transition

Figure 6 Instantaneous rate that codon x at site % is replaced by
codon y. T, represents the stationary marginal frequency of codon

y, k denotes the transition/transversion rate ratio and o) the
nonsynonymous/synonymous substitution rate ratio at site /.

tion. Accordingly, nucleotide substitutions causing the encoded amino acid
to change (replacement substitutions) will have fixation probabilities that
depend on the selective constraint imposed on the encoded amino acid. In
contrast, silent substitutions, i.e. a change in the DNA sequence has no effect
on the encoded protein, are invisible to selective forces acting on the protein
sequence. As a result, the ratio of nonsynonymous and synonymous substitu-
tion rates (w) will vary among sites in a DNA sequence, with ® = 1 indicating
no selection, ® < 1 representing purifying selection by removing replacement
mutations and ® > 1 representing diversifying positive selection/adaptive
evolution. Codon models have been specifically designed to model the evolu-
tion of protein-coding DNA sequences [59]. An example is shown in Figure 6
based on an extension of the HKY85 model [65] (see Figure 4). Note that, in
contrast to the conventional substitution models, codon models consider the
replacement of one nucleotide triplet (codon) by another. Thus, we obtain
43 — 3 = 61 possible character states at a site, the codon (the three stop
codons are not taken into account). Obviously, the assignment of a distinct
substitution rate ratio ® to each codon position would lead to a vast over-
parameterization of the model. Therefore, either a set of predefined w-values
or statistical distributions, both discrete and continuous, are used to account
for varying w-values among sites [104, 156,157].

3 Tracing the Evolutionary Signal

Given a set of homologous DNA sequences whose phylogeny is known, infer-
ences can be made about the evolutionary forces molding the contemporary
DNA sequences from their shared ancestral sequence. Conversely, with a
concept or a model at hand of how DNA sequences evolve one can aim to
reconstruct the phylogenetic tree based on the DNA sequences. In either case,
however, a meaningful sequence alignment is required. Thus, the sequences
need to be aligned such that homologous nucleotides in different sequences
form a column. To account for the insertion and deletion of nucleotides during
evolution, gaps are introduced to achieve this positional homology. Chapter
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3 deals with methods to compute sequence alignments. We will not dwell
on further methodological details and take it for granted that an alignment is
available. Based on this alignment, several criteria exist to compute the tree
that best reflects the evolutionary relationships of the data. We will explain
four principles for tree generation.

3.1 The Parsimony Principle of Evolution

Parsimony methods share as an optimality criterion that among various alter-
native hypotheses the one that requires the minimal number of assumptions
should be chosen. In the context of DNA sequence evolution one searches for
the tree(s) that explain the observed diversity in the contemporary sequences
with the minimal number of nucleotide substitutions (Figure 7). Usually
only a fraction of the differences in a sequence alignment determine the so-
called parsimonious tree(s). They are called phylogenetically informative in a
parsimony analysis. For instance, position 8 in the alignment (Figure 7) best
supports a tree grouping sequences W and X, and Y and Z, respectively. In

Position
1234567829
Sequence W: CGCACTGTT
Sequence X: CGCACTGTT
Sequence Y: TGAACTGCT
Sequence Z2: CGGACTGCT
* * *
W:C Y:T W:C Y:A W:T He
Y N\ o 2 AN
Tree 1: (WX)YZ)) \c — c2 G/ r2 c/
X:C/ \Z:C x:c/ \Z:G X:T/ \ :C
W:C X:C W:C X:C W:T :T
\N 7/ N\ N2
Tree 2: (WYXXZ)) C m—C c_c/ c—c/
)
Y N\ Y N 7\
Y:T Z:C Y:A Z:G Y:C :C
W:C Y:T W:C Y:a W:T :C
\N 7 \N 7 XN 7/
Tree 3: (WZ)(XY)) CmmC C o C Comm C
o (
z2:C X:C Z:G x:C Z:C :T
Position 1 Position 3 Position 8
Figure 7 Maximum parsimony tree represent one parsimonious reconstruction.
reconstruction from an alignment of four Nucleotide substitutions are represented by

DNA sequences. For the alignment columns black dots. Position 8 is the only position that

labeled with a “*” all three possible unrooted distinguishes the three trees with respect to
tree topologies are shown. Labels at the the number of substitutions. Tree 1 requires
leafs denote the taxon and the represented only a single substitution compared to trees 2

nucleotide. Nucleotides at the inner nodes and 3, which require two substitutions each.
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contrast, to explain the sequence diversity at positions 1 and 3, two substitu-
tions are necessary regardless of the tree structure. Such positions are called
phylogenetically non-informative in a parsimony analysis. The tree that is
supported best by the phylogenetically informative sites is then the maximum
parsimony tree. Note, however, that no unique solution is guaranteed since
more than one most parsimonious tree might exist.

3.1.1 Generalized Parsimony

To date, a vast number of modifications of the initial criterion of maximum
parsimony exist [39,40, 50, 88]. Instead of referring to each and every modifi-
cation separately, we would like to present the generalized idea of parsimony
[128,129] from which the individual modifications can be easily derived. In a
mathematical terminology, one aims to identify those trees in the space of all
possible trees which minimize the following equation:

B L
L(’E) = Z Z(O] . diff(xk/]-, xk//j) , (4)
k=1j=1

where L(7) is called the length of the tree 1, B is the total number of branches
in the tree, L is the number of nucleotide positions analyzed (alignment
length), and k" and k"’ are the two nodes connected by branch k displaying the
nucleotides xy/; and xy;. These can be either the observed nucleotides present
in the alignment or, in the case of internal nodes, the optimal nucleotide
assignments. Finally, diff(x,y) represents the cost-matrix that specifies the
cost of the transformation from nucleotide x to nucleotide y and w; is a specific
weight for each alignment position. Thus, diff and ® = (©y,...,®7) allow
for specifying a priori some beliefs about the importance of positions and
substitutions for the tree reconstruction, e.g. cost matrix A in Figure 8 reflects
a Jukes—Cantor type of evolution, whereas cost matrix B down-weights tran-
sitions relative to transversions.

|A C G T A C G T
Al— 1 1 1 Al- 5 1 5
A= C|l1 - 1 1 B= C|5 - 5 1
Gl1 1 — 1 G|1 5 — 5
T|I1 1 1 - T|5 1 5 —

Figure 8 Cost matrices for generalized parsimony. In matrix A
substitutions between all four nucleotides invoke the same cost. Matrix
B represents a slightly more sophisticated model. More weight is put
on transversions than on transitions.
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3.1.2 Multiple/Parallel Hits

Parsimony principles rely on the assumption that a group of related sequences
share a certain nucleotide by descent. However, this only approximates the
true evolutionary events if the overall amount of sequence changes is low.
Thus, multiple changes at the same site in one taxon or parallel independent
changes at the same site in different taxa are sufficiently infrequent not to
be an issue. However, when considerably diverged sequences are used for
tree reconstruction or marked substitution rate heterogeneity among sites
exists, multiple/parallel hits can cause severe problems in both assessing the
correct number of nucleotide substitutions along the phylogenetic tree and in
inferring the correct tree topology.

3.2 Distance-based Methods

In contrast to parsimony methods with a biologically motivated approach to
tree reconstruction, distance-based methods choose a mathematical route [43].
A phylogenetic tree is reconstructed for a set of taxa from their pairwise
evolutionary distances. To this end, a distance matrix D is calculated from
all possible pairwise sequence comparisons. Entry D;; of this matrix repre-
sents the distance between sequence i and sequence j. In a simple approach
D;j is computed as the edit distance (Hamming distance), i.e. the minimum
number of substitutions required to transform sequence i into j. However,
multiple changes at the same position cannot be accounted for and therefore
the Hamming distance will sometimes underestimate the true number of
substitutions. To rectify this, models of sequence evolution are invoked that
correct for multiple changes (see Section 2). Various methods were suggested
for inferring a tree from a distance matrix. Common, although in fact not es-
pecially designed for phylogenetic tree reconstruction, are clustering methods.
Clustering methods do not have an explicit objective function to be optimized.
UPGMA, the most widespread clustering method, will serve as an example.

3.2.1 UPGMA

The “Unweighted Pair Group Method using Arithmetic means” groups those
two taxa first whose evolutionary distance is minimal. Consider taxa A, B,
C, and D with evolutionary distances as shown in Figure 9a. The taxa A
and B with distance 6 are clustered first. Subsequently, A and B are treated
as one compound taxon AB, and pairwise distances to the remaining taxa
C and D are computed. D(4p)c is calculated as the arithmetic mean of the
individual distances D 4c and Dpc, thus D(sp)c = (7 +8)/2 = 7.5. Likewise,
we compute D 4p)p = (13 +14)/2 = 13.5. Now the cycle is repeated for the
new 3 x 3 distance matrix. We obtain ((AB)C) and D as the two remaining
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a) b)

Figure 9 Reconstruction of a phylogenetic tree with the UPGMA
method. From the matrix of pairwise sequence distances (a) the
phylogenetic tree shown in (b) is reconstructed. Numbers in (b)
represent the branch lengths inferred under the assumption of a
molecular clock. r identifies the root of the tree.

taxa with D((4p)c)p = (13 +14 +11)/3 = 12.7. Finally, D and ((AB)C) are
merged to conclude the procedure. The full tree (((AB)C)D) with branch
lengths is displayed in Figure 9b. Thus, UPGMA reconstructs a rooted tree,
where branch lengths are computed such that the distances from root r to the
leaves A, B, C, and D are identical (6.13 in our example). More generally, such
trees fulfill the so-called ultrametric inequality, i.e. for each triple of taxa X, Y
and Z:

Dxy < max[Dxz, Dyz]. 5)

Equation 5 is equivalent to the statement that two of the three distances are the
same and at least as large as the third distance. More interestingly, the reverse
is also true. If for a distance matrix the ultrametric inequality is fulfilled, then
the distance matrix is representable by a rooted tree such that the distances
D;; are identical to the sum of the branch lengths connecting the two taxa
X and Y in the tree. In biological parlance, if the distances computed from
a set of aligned sequences obey the ultrametric inequality then the sequences
evolve according to a molecular clock, i.e. they accumulate substitutions at the
same rate (see Section 2). Therefore, UPGMA can give misleading trees if the
distances reflect a substantial departure from the molecular clock. To arrive
at a correct tree topology nevertheless, the distance matrix can be corrected
for unequal rates of evolution among the lineages under study (transformed
distance method [87]). The such modified distance matrix can then be used to
infer the tree topology using UPGMA.

3.2.2 Neighbors-relation Methods

To overcome the restriction of the molecular clock, the characterization of
unrooted trees with branch lengths is helpful. If it is required, alternative
routes can be taken at a later step in the tree reconstruction to located the
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Figure 10 An unrooted quartet tree and its branch lengths
reconstructed from the distance matrix in Figure 9(a).

position of the root (see Section 3.6). The celebrated four-point condition and its
relaxations [5,20] state conditions when a distance matrix is representable as
a tree. A distance matrix is representable as a tree if and only if for all quartets
W, X, Y and Z in a taxon set the following holds:

Dwx + Dyz < max[Dywy + Dxz, Dwz + Dxy] . (6)

The distance matrix in Figure 9(a) fulfills this criterion and the corresponding
unrooted quartet tree is displayed in Figure 10. However, for real data the
four-point condition is rarely met. Thus, one relaxes this condition by intro-
ducing the concept of neighbors. Two taxa are called neighbors in an unrooted
tree if they are connected through a single internal node. For instance the taxa
A and B in Figure 10 are neighbors, while the taxa A and C or B and D are
not. This concept of neighborhood was generalized to distance matrices [5]
and resulted in a series of tree reconstruction methods [5,51,131].

3.2.3 Neighbor-joining Method

A widely used method based on the neighbors-relation concept is the NJ
method by Saitou and Nei [123]. NJ is a clustering algorithm. During each
clustering step, two taxa or clusters of taxa are identified as neighbors in
the tree, if their grouping results in a tree whose overall length is minimal,
ie. the sum of the lengths of all branches is minimal (minimum-evolution
criterion [21]). To this end, one starts with a star-like tree. Subsequently, two
taxa X and Y are identified that minimize:

S ! i(D +D )+1D T Y D (7)

XY = 578 o) Xk k) T 5Pxy + 5 ij -
2(N-2) &= 2 N-2, =y !

The cycle of calculating a new distance matrix and identifying the next neigh-
bors is continued until the initially star-like tree is fully resolved (see also
Section 12). For details of the NJ algorithm, see Ref. [147]. Since then, several
weighted and improved versions of the NJ algorithm have been published
[16,53].
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3.2.4 Least-squares Methods

We have described the application of cluster methods to phylogeny recon-
struction. However, another view of the reconstruction problem based on
a distance matrix is the specification of an objective function we want to
optimize. From a mathematical view, we want to find a tree together with
its branch lengths such that the distance of two taxa X, Y in the tree, i.e. the
sum of the branch lengths connecting the two taxa in the tree, is close to Dy

The least-squares method provides such a measure for the goodness of fit
of the tree and its branch lengths to the data. The best tree (11 5) under this
criterion minimizes the following equation:

R(t) = Y (Txy — Dxy)?, (8)
Xy

where Txy is the sum of the branch lengths along the unique path connecting
sequences X and Y. Cavalli-Sforza and Edwards [21] and Fitch and Mar-
goliash [49] were among the first to apply the least-squares theory to the
tree-reconstruction problem. However, the big challenge is the determination
of the tree topology.

3.3 The Criterion of Likelihood

The third method of tree reconstruction is based on the principle of ML
[48] which was made popular in the field by Felsenstein in 1981 [42]. The
general idea of ML is as simple as it is appealing: for a given model M
and its parameters 0, the probability or likelihood of observing data D can
be calculated. Those parameters are chosen that maximize the likelihood of
observing the data. For the particular problem of inferring a phylogenetic tree
from biological sequence data the tree topology 7 is introduced such that:

ML = argmax P(D|t,0yy). 9)
(%8m)

Note the subtle, but far-reaching, difference to the principle of maximum
parsimony. The general concept of sequence evolution inherent to maximum
parsimony, i.e. that one sequence is transformed into another via the least
number of changes, is replaced by an explicit model of sequence evolution
to describe the substitution process. From this the most significant advantage
of ML becomes apparent: it allows us to incorporate any model of biological
sequence evolution into the tree reconstruction process. In this way, it opens
access to the full use of statistical approaches to compare alternative phylo-
genetic hypotheses, as well as to test fit and robustness of individual models
of sequence evolution. A further advantage compared to the previous two
approaches is the possibility to make full use of the sequence information.
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In a likelihood framework also constant alignment sites provide information
about the tree topology and its branch lengths.

3.4 Calculating the Likelihood of a Tree

We have described in Section 2 how to calculate the probability of observing
a difference at a given site in two sequences. We now extend this to compute
the probability to find a certain nucleotide pattern (As) in column s of N
aligned DNA sequences, e.g. the pattern CCTC at position 1 of the alignment
shown in Figure 7. This probability depends on the model of DNA sequence
evolution and on the tree relating the N nucleotides in the alignment column:
P(As|t,0)1). We assume that all positions in the alignment of length L evolve
according to the same evolutionary model M and evolve independently from
each other. Then, the probability of the alignment given a tree and a model is
a function of the tree T and 0. Thus:

L
P(Alr,0m) = [ [ P(As|t, 0m). (10)
s=1

To avoid numerical problems caused by underflows and rounding errors
during the calculation the likelihood of the data is usually calculated in log-
scale, such that:

log[P(Alt, 01)] Zlog (As|t, 00m)]. (11)

Equation (11) facilitates computation of the likelihood of an alignment, if
Oy, T and its branch lengths are specified. In reality, however, we face
the reverse situation. Starting from a given alignment, we aim to infer the
underlying phylogenetic tree together with its branch lengths. In order to do
so we regard these parameters as variables. Once we have decided on an
evolutionary model and have specified its parameter values, we can adjust
the tree topology and the branch lengths such that Eq. (11) is maximized.
While straightforward and efficient ways exist to obtain ML branch lengths
for a specific tree topology (e.g. Ref. [42]), it is a computationally demanding
problem to obtain an optimal tree topology. Section 4 explains the details.

3.5 Bayesian Statistics in Phylogenetic Analysis

The likelihood approach outlined so far determines the quality of a tree by
calculating the probability of observing the alignment A given the tree T and
the model of sequence evolution specified by 8y, (see Eq. 11). If we consider
a particular combination of T and 6, as an evolutionary hypothesis, H, we



100

4 Phylogeny Reconstruction

have inferred P(A|H), the probability of A given H. However, it might be
interesting to address the reverse question: what is the probability that the
evolutionary hypothesis H is correct given the data, i.e. P(H|A) (see [37, p.
106])? Applying Bayes’ theorem, we can calculate this posterior probability
as:

_ P(A|H)P(H)
P(H|A) = TPlA) (12)
Rewriting the equation for the problem of tree reconstruction we obtain:
P(z, 0y 4) = DAL OUIP(5 o) (13)

P(4) '

where P(1, 6)) is the prior probability to choose the tree T and the model with
its parameters. P(A) is the total probability of the alignment A.

Equation (13) can be used in two ways for making phylogenetic inferences
from a set of DNA sequences. If one is only interested in identifying the tree
that is best supported by the data, one simply determines the tree and the 6
that maximize Eq. 13. Because P(A) is a constant it can be ignored during
optimization. Alternatively, the posterior probability for every possible real-
izations of T and 6, (H;) can be calculated. This identifies not only the H; that
is supported best by the data, but allows us also to assess how much better
the support is compared to the alternative hypotheses [139]. However, it is
easy to see that this is feasible for only a very limited number of sequences
(see Section 4.1). Thus, Markov chain Monte Carlo (MCMC) simulations are
used to estimate the posterior probabilities [105].

Imagine that the individual H; comprise points in a landscape and P(H;|A)
corresponds to their respective (unknown) altitude. A MCMC simulation is
similar to a walk through this landscape that visits the individual points. This
walk, however, is not totally random, but guided in a way that higher points
are visited more often than lower ones. Thus, when the walk is finished
an altitude profile of the landscape is generated from the number of times
a particular point was visited. In practice, MCMC simulations work the
following way. Starting from any H; the transition to a new hypothesis H;, e.g.
anew tree topology, is proposed with a probability q(Hj, H;). This proposal is
then accepted with probability:

i [ 1 DCAIH)P(H))q(H;, Hj)
"P(A|H;)P(H;)q(H;, H;) )’

(14)

otherwise remaining at H;. If H; is supported better by the data than H;,
then H; is always accepted. Otherwise, H; is accepted with a probability that
depends on how much worse the support of H; is compared to H;. The latter
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option ensures to escape from local optima (see Section 4). If the transition
is accepted, H; will be sampled and the chain moves on. Given that the
chain could run for a sufficiently long time, the number of times H; has been
sampled reflects its posterior probability. However, in most cases it is not
clear how long a chain should be run. To reduce potential biases of the Monte
Carlo estimates, initial sample points are generally discarded [9]. This burn-in
procedure has the effect that the chain samples only near-optimal hypotheses.
Moreover, one samples only every 1000th hypothesis to generate more or less
independent samples [46]

Today, more sophisticated MCMC simulations are performed that use sev-
eral Markov chains whose “temperatures” differ [57, 77]. So-called “hot”
chains have a high acceptance probability of inferior transition proposals.
To stay in the above picture, they are used for a more global exploration of
the landscape since their affinity to areas of high altitude is low. In contrast,
“cold” chains with their low acceptance probability of inferior hypotheses are
used for a thorough exploration of local areas in the landscape. Hypothesis
sampling is done only from the cold chain. However, from time to time, the
temperatures of the chains are swapped such that a hot chain is turned into a
cold chain and vice versa. However, many more variants of MCMC sampling
of phylogenies exist and the field is quickly evolving [33,74-76,95].

3.6 Rooting Trees/Molecular Clock

So far we have introduced various methods of inferring the relationships
between sequences (or taxa). Unfortunately, most of the methods described
above lack an inherent criterion for assigning directionality to the evolu-
tionary process. As a consequence, they are unable to identify the root of
a phylogenetic tree. To obtain a rooted tree, nevertheless, it is required
(and possible) to add supplementary information into the tree reconstruction
procedure.

3.6.1 Outgroup Rooting

Among the various methods for rooting a tree, it is most intuitive to divide
the taxa into two subgroups: a monophyletic ingroup, i.e. taxa that share
a common ancestor to the exclusion of all other taxa in the dataset, and an
outgroup, whose more distant relationship to any member of the ingroup
is either known or at least reasonable to assume (Figure 11a). It is then
straightforward to conclude that the node that joins the outgroup to the
ingroup represents the root of the ingroup subtree (rgyptree in Figure 11) [110,
140]. Though simple, this approach requires some considerations. Despite
their clear position outside the ingroup, outgroup taxa should be as closely
related to the ingroup taxa as possible. This will increase the probability of
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Figure 11 Two alternative principles for of all taxa, must be located somewhere on
rooting phylogenetic trees. (a) Outgroup the outgroup branch. However, its exact
rooting. The set of taxa A—E is divided position remains unknown. (b) Distance-
into an ingroup (shaded in grey) and the based rooting. t to z denote the lengths of
outgroup, taxon E. The node that joins the the individual branches in the tree. The root
outgroup to the ingroup represents the root of the entire tree is identified as the midpoint
of the ingroup-subtree (7supiree)- The root of the path connecting the two taxa with the
of the entire tree, i.e. the common ancestor largest evolutionary distance.

reliably identifying homologous sequence positions using standard alignment
procedures. Furthermore, it minimizes the risk of misplacing the outgroup
due to its large evolutionary distance from the ingroup [99,127,154]. In
addition to these more general requirements, some additional guidelines exist
for rooting phylogenetic trees by an outgroup. First, more than one taxon
should be included into the outgroup [100]. Furthermore, different outgroup
taxa should be used to check whether the root placement depends on the
choice of the outgroup [150].

3.6.2 Midpoint Rooting and Molecular Clock

As we have seen, the choice of a meaningful outgroup for rooting a phyloge-
netic tree can become a considerable problem. This is especially relevant when
groups are analyzed whose phylogenetic relationships are unclear. In such
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cases additional assumptions about the evolutionary process are imposed that
help rooting the tree.

Given that per unit of time any lineage accumulates the same amount of
sequence changes (molecular clock) the point in the tree that is equally distant
from all terminal taxa can be assigned as the root (see Section 3.2). In reality,
however, the assumption of a molecular clock is frequently violated. If this
is neglected rooting under the clock assumption tends to place the root in a
part of the tree that is evolving at a high evolutionary rate. Midpoint rooting
slightly relaxes the constraints imposed by the molecular clock assumption. It
places the root on the midpoint of the path connecting the two most distantly
related taxa in the phylogenetic tree (Figure 11b). Compared to the molecular
clock scenario this retains only the postulation that the evolutionary rate has
to be the same along the two most divergent lineages in the dataset. Midpoint
rooting identifies the localization of the root correctly when this criterion is
met [148].

4 Finding the Optimal Tree

So far we have outlined the principles to construct a phylogenetic tree from a
set of aligned sequences. However, it still is unclear how to find the tree that
reflects the relationships between the taxa best. We can differentiate between
two general concepts of searching the tree space comprised by all possible
tree topologies for the desired optimal tree: (i) exhaustive searches, which
guarantee the identification of the optimal tree, and (ii) the computationally
less-demanding heuristic searches that, however, do not necessarily obtain the
globally optimal tree.

4.1 Exhaustive Search Methods

In the conceptually simplest approach, the exhaustive search, each and every
possible bifurcating tree in the tree space is evaluated under the selected
optimality criterion. The identification of the optimal tree(s) is then straight-
forward and the computational challenge is limited to exploring all of the
tree space. To accomplish this, one starts with the (unique) unrooted tree
that connects three randomly chosen taxa from the dataset. Subsequently,
the remaining taxa are added in a step-wise fashion, such that the ith taxon
is added separately to each of the 2i — 5 branches of every possible tree for
the i — 1 previous taxa. Obviously, the addition of every taxon increases the
number of possible trees by the number of branches to which the new taxon
can be connected [41]. Thus, the total number of unrooted trees for a set of n
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taxa is:

" (2n — 5)!

B(n) = g(Zk—S) = B (15)

The limitations of the exhaustive search are evident. Already a compilation of
20 taxa, a dataset that is nowadays easily exceeded, requires the evaluation of
over 2 x 10?0 different trees. This is, and presumably will remain, computa-
tionally infeasible.

Branch-and-bound methods [93] provide an alternative approach to finding
a globally optimal solution without the need of evaluating all tree topologies.
Instead, a guided search in the tree space is performed omitting those sub-
spaces that cannot contain an optimal tree [67]. The rationale is simple and
has the only prerequisite that the criterion of tree evaluation, i.e. the objective
function F, is nondecreasing when new taxa are added to a particular subtree.
If we want to minimize F, then we start with the computation of an upper
bound Fypper, €.g., we evaluate any arbitrary n-taxon tree. Subsequently,
using a three-taxon tree as a primer we recursively reconstruct the possible
n-taxon trees. However, as we move along in our reconstruction procedure,
i.e. with the addition of more and more taxa into the trees, we compare F
of the resulting subtrees with Fypper. As soon as Fgypiree €Xceeds Fypper We
know that the search path leads to a subspace which contains trees where F
is always larger that Fypper. Thus, no further reconstruction is required and
another search path is evaluated. Alternatively, if we end up with a n-taxon
tree, we store the new tree as candidate and update Fypper to the new value.
The estimation of Fypper is crucial for the computational efficiency. Therefore,
a number of improvements have been added to this basic scheme [67,148].
These refinements are mainly designed to further reduce the exploration of
tree space. They include methods for obtaining a near-optimal tree for an
assessment of the initial upper bound, as well as schemes for generating a
suitable order in which the taxa are added to the subtrees. For instance,
by adding divergent taxa first, the length of the initial subtrees is increased,
allowing for a quicker identification of subtrees that exceed the upper bound
for the tree length.

Despite these improvements, exact searches eventually run into computa-
tional problems when data sets become large. For these cases, the consider-
ably faster heuristic methods for tree reconstruction are required.

4.2 Heuristic Search Methods
Heuristic methods for tree reconstruction earn a substantial speed-up in com-

putation time by jettisoning a guaranteed globally optimal solution to the tree
search problem. With contemporary software it is possible to reconstruct trees
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from datasets of more than 1000 taxa (e.g. [63,107,141]). Thus, nowadays
biological datasets hardly ever reach the computational limits of tree recon-
struction software, provided that one is willing to abandon the guaranteed
optimality.

4.2.1 Hill Climbing and the Problem of Local Optimization

The problem to find an optimal tree for a set of taxa can again be illustrated
by the metaphor of exploring a landscape. A hiker aims to visit the point with
the highest altitude in a hilly area. Due to the poor visibility, the highest peak
cannot be identified a priori. Thus, the hiker remains with the only option to
climb any slope he encounters first until he has reached its top. Up there he
checks his altimeter and is either confident to have reached one of the highest
points in this area and finishes his search or he invests more effort and climbs
another hill. This kind of search strategy is called a local search.

Applying this approach to the tree search problem, we start off with any tree
and modify it in a stepwise fashion, usually accepting only such modifications
that result in an improved tree according to the chosen objective function.
At a certain point no further improvement is possible and thus we have
reached the top of the hill. At this point we have no means of deciding
whether we have found the globally optimal tree or merely a local optimum
and an optimization with a different initial tree would obtain better results.
Consequently, tree searches based on a local search have to cope with three
challenges: (i) the identification of a reasonable tree to start the search with,
(if) the implementation of a stepwise hill-climbing algorithm for the tree
search and (iii) the avoidance of getting stuck in local optima that are highly
suboptimal in terms of cost.

4.2.1.1 Identification of the Starting Tree
Reasonable starting trees are quickly obtained via so-called “greedy” strate-
gies. The tree reconstruction is divided into several subproblems which are
then sequentially solved by always choosing the solution that looks best
given the current situation. In star decomposition methods (Figure 12), we
begin with an assignment of all taxa to the terminal nodes of a star-like tree.
Subsequently, all trees are evaluated that can be obtained by joining any two
of the terminal taxa into a new group. The tree that scores best under the
chosen optimality criterion forms the basis for the next step. The iteration of
pairwise joining and tree evaluation continues until the tree is fully resolved.
Alternatively, we can directly construct a binary tree from scratch by insert-
ing the taxa into a tree in a stepwise fashion (Figure 13) [38]. First, a set of
three taxa is used to form a unique binary tree. Next, a fourth taxon is chosen
for insertion into the initial tree. Since the taxon can be attached on any of
the three branches of the initial tree, we have three possible topologies for the
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Figure 12 Star decomposition.

Figure 13 Stepwise insertion.

four-species tree. All of these will be evaluated and the best tree will be stored
for insertion of the fifth taxon. The iteration continues until the tree includes
all taxa in the dataset.

It is straightforward to see why both star decomposition methods as well as
the stepwise insertion procedure are prone to obtaining only locally optimal
trees. Any decision concerning the position of a taxon in the tree is fixed for
the remaining part of the reconstruction procedure.
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Nearest Neighbor Interchange subtree pruning + regrafting tree-bisection + reconnection
Possible NNI trees = O(n) Possible SPR trees = O(n?) Possible TBR trees = O(n3)

Figure 14 Three methods that accomplish branch swapping.

4.2.1.2 Optimization Procedure and Avoidance of Local Optima

In order to escape local optima, tree-rearrangement methods were suggested
that override previous decisions concerning the placement of taxa in the tree.
In brief, the initial “optimal” tree is modified such that a part of the tree
is excised and re-inserted elsewhere. The trees resulting from such “branch
swaps” are evaluated and subjected to one or more acceptance criteria. While
a better tree is always accepted, trees inferior to the one already obtained
can be accepted under certain conditions [77]. This deviation from the strict
hill-climbing approach facilitates the transition to better trees that require
more than one rearrangement of the current best tree. Note, the similarity
to the MCMC approach (see Section 3.5). Currently, three branch-swapping
methods are in use (Figure 14). Nearest neighbor interchange, the simplest
approach, takes any internal branch of the tree and swaps two of the four
connected subtrees. In this way, a total of O(n) alternative trees are evaluated.
(Note that only swapping two subtrees located on the opposite sides of the
internal branch leads to the formation of a new tree!) Subtree pruning and
regrafting (O(n?)) excises a subtree and regrafts it with the cut surface at any
branch on the tree. Tree bisection and reconnection is the most exhaustive way
of swapping branches (O(n%)). The tree is bisected along an internal branch
and the resulting subtrees are rejoined at any pair of branches.
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As noted, any of the branch-swapping methods is capable of guiding the
tree-reconstruction procedure out of a local optimum. However, no guar-
antee is given that this does not simply lead into the next local optimum.
Apparently, if the branch swapping is continued for a sufficient amount of
time it becomes likely that sooner or later the global optimum will be found.
However, how shall we recognize the globally optimal tree once we found it
and for how long should we continue the tree search?

4.2.2 Modeling Tree Quality

It is inherent in the heuristic approach that, no matter how long we search,
we can never be sure that we have found the globally optimal tree. Thus,
we need a concept of tree quality, as we are continuing the search. In most
cases it is essentially up to the user how long the search is continued. Either a
predefined number of optimization steps or a lower limit by which new trees
have to improve can be used as stopping criteria. However, both criteria are
arbitrary and a well-founded basis for deciding when to end the search would
be desirable. Recently, a method was suggested that is based on the rate of
finding better trees during the search [152]. Let F;, B, .. ., E denote the values
of the objective function F for the trees found at iteration 1,2, ..., . Then the
sequence (k) of record times (i.e. number of iteration at which a better tree is
found) is defined by:

This sequence is used to estimate the point in time, Tstop when to stop the
search based on the probability of yet finding a better tree. Using the theory
detailed in Refs. [23,120], one can estimate on the fly an upper 95% confidence
limit rg5e, of Istop- Once rgs59, iterations have been carried out and a better
tree has not been detected the program will stop. It can then be concluded
that with a probability of 95% no better tree will be found during this search.
On the other hand, if a better tree is found before rgs5¢, is hit, the rg59, is re-
estimated on the basis of the new record time added to the sequence r(k) and
the search continues.

4.2.3 Heuristics for Large Datasets

The considerable ease with which DNA sequences are obtained nowadays
results in ever-increasing datasets available for phylogeny reconstruction. As
a consequence there is a demand for increasing the capacity of tree reconstruc-
tion software. One way to satisfy the needs is the development of parallelized
versions of tree reconstruction programs, e.g. fastDNAml-based programs
[111,141,142], TREE-PUZZLE [132], GAML [14] and MRBAYES [2].

The objectives for further improvements on the computational basis can
be quickly summarized. (i) Finding in a shorter time a better starting tree
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for subsequent optimization. IQPNNI [152] accomplishes this by limiting the
number of computation steps to place a new taxon during tree reconstruction.
PhyNav [151], on the other hand, reduces the initial tree space by choosing
for each group of closely related taxa one representative. From the result-
ing representative leaf set a scaffold is reconstructed, to which the initially
deferred taxa are subsequently added such that an optimal tree is obtained.
(ii) Improving the algorithms for tree optimization. For instance, PHYML
[63] has implemented a fast algorithm for nearest-neighbor interchange, and
RAXML [141] provides an improved version for subtree pruning and regraft-
ing. (iii) The utilization of alternative approaches for tree reconstruction, such
as a metapopulation genetic algorithm [96]. (iv) The dissection of the tree-
reconstruction problem into a set of subproblems that can be solved on several
CPUs in parallel. Some of these improvements are recent developments and it
is not clear yet which combination will be optimal for tree reconstruction. In a
sense an all-embracing optimal solution might be elusive since it is likely that
different combinations will perform optimally on different data sets. Thus, it
seems impossible to provide guidelines for when to use what program.

5 The Advent of Phylogenomics

A common problem for the accurate reconstruction of evolutionary relation-
ships among taxa is the limited amount of phylogenetic signal in the data
which, in addition, is frequently blanketed by noise. In view of the various
genome sequencing efforts it seems trivial to enhance the signal-to-noise-
ratio by the simple addition of more data [69]. However, even with the
availability of whole-genome sequences, alignments remain limited to the
level of individual genes in many cases. Both the rearrangement of genetic
information in different taxa and the in part substantial sequence divergence
of nonfunctional parts of the genome prevent the generation of meaningful
longer sequence alignments. To extend the amount of information, nonethe-
less, disjoint datasets derived from multiple genomic loci can be combined for
the analysis. This intersection of phylogenetics and genomics is referred to as
phylogenomics.

5.1 Multilocus Datasets

Two approaches have been suggested for combining multilocus datasets from
the same set of taxa for phylogenetics analysis. In supermatrix approaches
[126] (also referred to as “total evidence” [89]) all individual sequence align-
ments are concatenated to form one large superalignment. The tree recon-
struction is then based on this superalignment using standard methods. In
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Figure 15 Two alternative methods to
reconstruct a single phylogenetic tree
from a set of disjoint alignments. In the
early-level combination, the individual
alignments represented by the patterned
boxes are concatenated first to form a

reconstruction programs can then be applied
to reconstruct a tree from the superalignment.
In the late-level combination a phylogenetic
tree is reconstructed first for each alignment
separately. The individual trees are later
combined into a single consensus tree.

single superalignment. Standard phylogeny

this approach, the phylogenetic information present in the individual align-
ments is combined early in the phylogenetic analysis. Hence, we refer to
them as early-level combination methods (Figure 15, “early”). Alternatively,
the information present in the individual alignments can be combined late
in the phylogenetic analysis. Trees are reconstructed first for each alignment
separately. These individual trees are then combined at a later step to form a
so-called consensus tree (Figure 15 “late”). However, in contrast to the concate-
nation of individual alignments, which is simple text-editing, the combination
of trees requires some further considerations.

A frequently used method for computing a consensus from a compilation of
trees is based on the principle of identifying the set of compatible splits among
these trees. To this end, splits comprise bipartitions of the taxon set that are
induced by cutting a tree at any edge. More formally, splits are represented
by the symbol “|” (Figure 16). Note that cutting at an external edge creates
only trivial splits present in all trees. These are usually discarded from the
analysis. Thus, we can induce for any tree with taxon set N a split \A| B, such
that AUB =N and ANB = Q.

From the tree in Figure 16 we deduce the splits {A,B}|{C,D,E} and
{A,B,C}|{D, E} (or shorter AB|CDE and ABC|DE) We note that taxon C has
changed sides. Thus, if we compute all four possible intersections between the
splits only one will be empty. More formally, two splits .A|B and C|D are said
to be compatible if one of the four possible intersections ANC, AND, BNC,
B N D is empty. If two intersections are empty the splits are identical. It is
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E

Figure 16 Two nontrivial splits can be derived from this tree. Cutting
at the edge y induces the split AB|CDE. Cutting at edge z moves
taxon C from the right-hand side of the split to the left-hand side and
results in ABC|DE.

easy to see that splits derived from a tree are always pairwise compatible. On
the other hand, a collection of splits that are pairwise compatible fit on a tree.
Hence, collections of pairwise compatible splits are another way of encoding
trees. For multilocus data the resulting trees are not necessarily the same
and, thus, one needs approaches to summarize the results. The easiest form
to summarize the result is simply counting the fraction ¢ at which a certain
split occurs in a set of trees. If we collect only splits with £ > 50%, then the
resulting system of splits is pairwise compatible and therefore representable as
a tree [136] which we call M5y or majority rule consensus tree [102] (Figure 17).
The cutoff value ¢ can of course be raised to construct more stringent majority
consensus trees My [102].

A D A
/ AB|CDEF strict consensus
B E ABC|DEF B
ABC|DEF
C F c

Tree A

A D ABC|DEF - 3 (100%)

>

Tree B

AC|BDEF majority—rule
ABC|DEF AC|BDEF
ABCD|EF ABC|DEF

Q

F
Tree C

Figure 17 Examples for consensus methods to summarize a set of
trees with identical taxon sets: strict (Mggrict), sSemi-strict (Msemi-strict)
and 50% majority rule consensus (Ms).

More restrictive cases of majority consensus are the strict consensus Mggrict
[122] that incorporates only splits present in all trees, and the semi-strict
consensus Mgemi-strict [15] that contains all splits which are not contradicted
by any split from the input trees (Figure 17). Many further methods exist for
generating a consensus tree (e.g. Refs. [1,19,81,133]).

111

semi—strict ¢
AC|BDEF _ o 3
c E AC|BDEF -2 (66.704) ABC|DEF E
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The application of consensus methods extends beyond the combination of
trees from multilocus datasets. In principle, they can be used to summarize
any set of trees, e.g., derived from Jackknife [106] or Bootstrap analysis [35,
44], sampled from MCMC simulations [77], or obtained by randomized input
orders [144] to assess the reliability (or uncertainty) in the reconstructed trees.

5.2 Combining Incomplete Multilocus Datasets:
Supertrees and their Methods

Consensus methods have one serious limitation — they are restricted to trees
of equal size and taxon sets. The mutual coverage of currently available
gene sequences and taxa is far from being satisfactory [32]. Thus, consensus
methods are only applicable to very special and restricted multilocus data.
This results in a trade-off between the number of taxa and the number of loci
used in an analysis. Thus, one can study either many loci with only few taxa or
vice versa. This situation will improve as more sequence data accumulate, es-
pecially in the wake of completely sequenced genomes. However, incomplete
data will still remain simply because not all genes are present in the genomes
of all taxa. Consequently, the question emerges of how to incorporate multiple
incomplete datasets into phylogenetic analysis.

In principle, similar strategies are applicable as outlined in Section 5.1.
Supermatrix methods use concatenated alignments. However, this requires
that tree reconstruction methods must be able to handle the missing data.
Simply discarding alignment positions with gaps would leave the user with
only completely sampled loci or even no data at all.

When the data is combined at a late level in the analysis, several strategies
are feasible. Methods have been proposed to combine separately recon-
structed overlapping (typically rooted) trees of the different loci into one
so-called supertree [11, 60] (Figure 18). Supertree approaches can be divided
into two classes: agreement supertrees [12] and optimization supertrees [155].

5.2.1 Agreement Supertrees

Agreement supertree methods reconstruct a supertree based on those group-
ings that are shared or at least are uncontested among the set of rooted
source trees [12]. This reflects the assumption that all source trees can in
principle be obtained simply by pruning different sets of branches from one
large tree, the parent tree, i.e. the source trees are compatible. It should,
therefore, be straightforward to reconstruct the topology of the parent tree
from the topologies of the source trees. Unfortunately, different parent trees
may frequently lead to the same set of partial trees. In other words, agree-
ment supertree reconstruction may result in different parent trees. The first
supertree method available [60] was designed to find all possible parent trees
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Figure 18 A number of different methods
to construct a single phylogenetic tree
from a set of alignments with incomplete,

but overlapping taxon sets. In early-
level combination all alignments are
concatenated into one large (super)alignment

(or supermatrix, missing sequences are
filled with gaps) from which the tree is
reconstructed. In late-level combination the

(typically rooted) trees are decomposed into

sub-structures like rooted triplets (to obtain
common nestings) or quartets, or are re-
coded into a binary matrix representation
(see Figure 19). These are then used

to reconstruct a supertree. In medium-
level combination with SQP the data is
combined via quartets computed from each
alignment. The resulting superquartets are
then amalgamated into an overall tree.

for a set of partial trees and compute the strict consensus from the different
parent (see Section 5.1). The resulting supertree, however, displays only those
bipartitions that are supported in all parent trees, but some information about
the structure present only in a fraction of the parent trees might be concealed.
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Thus, subsequent approaches like OneTree [17] returned only a single possible
parent tree as the supertree. Obviously, the strict requirement of the source
trees being compatible severely limits the applicability of these supertree
methods. Any real application leads to source trees that are incompatible for a
variety of reasons, one of which is just by chance. Thus, subsequent agreement
supertree methods, such as the MinCut Supertree algorithm [135] or the
ModMinCut Supertree algorithm [112] aimed to overcome the requirement
of compatibility. In brief, they introduced a weighting of the links between
taxa (i.e. common occurrence in the same subtrees) during the reconstruction
of supertrees, such that the weight of a link increases the more source trees
display this link. Subsequently, if a subtree cannot be resolved further due
to incompatible source trees, the subtree is resolved by pruning those links
with the lowest weight (MinCut) greedily. Furthermore, the ModMinCut
Supertree algorithm [112] aims to keep links that are uncontradicted, even
if they are established only by a single input tree, which would cause the
MinCut Supertree algorithm to discard it. Further agreement supertree meth-
ods have been suggested recently and a comprehensive overview is given in
Refs. [10,12].

5.2.2 Optimization Supertrees

Here, the set of input trees is decomposed into smaller entities. These entities
serve as input to reconstruct an overall tree based on an objective function.

Matrix representation methods are one example. Prior to constructing the
supertree, the rooted input trees are encoded into a binary matrix. Typically
each internal node in the (rooted) input trees is encoded either by its adjacent
subtree (Ragan/Baum scheme [7,119], Figure 19a) by assigning “1” to taxa
within the subtree and “0” otherwise, or its adjacent sister groups (Purvis’
scheme [118], Figure 19b) assigning “0” to the taxa in one sister group and “1”
to the other. All other and missing taxa of the tree are assigned “?”. The ob-
tained matrix representation of the input trees is then used as input alignment
to reconstruct a supertree (Figure 18). For this purpose, various optimizing
algorithms can be applied, such as (i) parsimony (MRP [7,119]), which is
to date the by far most common method, (ii) distance-based methods (MRD
or average consensus method [94]), and (iii) finding the optimal tree which
requires the least changes between ones and zeros (flips) to be congruent with
the matrix (MRF [22]).

As an alternative to the matrix representation method, quartet-based su-
pertree methods make direct use of the topological information in the input
trees. To this end, the source trees are decomposed into quartet trees, which
then serve as building blocks to reconstruct of the supertree [115,121] (Fig-
ure 18).
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Figure 19 For matrix representation methods Missing taxa get the character “?”. (b) In

like MRP a set of rooted input trees are Purvis’ scheme only adjacent sister groups
encoded into a binary matrix. Each internal are encoded to compensate for different tree
node (here 1-6) forms a column in a “binary”  sizes. Taxa connected to one subtree are
matrix. In the coding scheme of (a) Baum assigned “1”, those of the sister subtree “0”.
and Ragan a taxon that is located in the Missing taxa and those located root-wards
subtree associated to the current internal are assigned the character “?”.

node is assigned “1”, and a “0” otherwise.

5.2.3 The Supertrees/Consensus versus Total Evidence Debate

Alternative approaches to reconstruct trees from incomplete multilocus data
ultimately invoke the debate whether supertree/consensus methods are su-
perior to a supermatrix approach [10, 13, 24,108], or vice versa [34,55,89,90].
Meanwhile a number of points of critique have been raised against either
approach, as have advantages. The predominant critique on the supermatrix
(total evidence) approach addresses the issue of choosing an evolutionary
model and its parameters such that the various evolutionary constraints im-
posed on the different concatenated datasets are reflected. On the other hand,
supertree methods are criticized for their careless treatment of information
provided by the data. Usually, the underlying sequence data is discarded
prior to combining the input trees. Thus any information not represented by
the tree topology is inevitably lost. Furthermore, supertrees carry the risk of
possible unwanted data duplication and weighting [54, 56], especially if tree
topologies have been collected from the literature.

5.2.4 Medium-level Combination

Based on the above criticisms, a third level of dataset combination has been
proposed recently [133], which takes an intermediate position between the
(late) supertree and the (early) supermatrix approaches. Thus, we call it
medium-level combination. The so-called superquartet puzzling algorithm
(SQP [133]) combines the data on the level of four-taxon (quartet) trees. These
so-called superquartets are then used as building blocks in the reconstruction
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using a voting scheme and a construction algorithm that is aware of missing
data. SQP allows the application of evolutionary models fitted to each locus
separately. Furthermore, it uses the phylogenetic information in the sequences
both for combining the data and in the reconstruction of the final tree. Thus,
SQP tries to combine known advantages of supermatrix and supertree meth-
ods. In addition, SQP can use datasets without defined outgroups or other
information where the root has to be placed, which is generally required by
most other supertree methods.

6 Phylogenetic Network Methods

By the nature of the biological data, the tree-reconstruction methods presented
so far are only approximate methods. For any sufficiently large dataset, the
four-point condition (Eq. 6) introduced in Section 3.2 is frequently not fulfilled.
In such cases either the assumption of the underlying data evolving according
to a (single) tree is not valid or methodological shortcomings disguise the
tree-like evolution of the data. A number of reasons why the evolutionary
relationships of DNA sequences might not resemble a tree (both methodolog-
ical and biological) have been outlined earlier in this chapter (see Sections 1.2.1
and 5.1). Irrespective of the cause for the nontree-likeness of the phylogenetic
signal in the data, it is obvious that coming up with a single tree is a feature of
tree-reconstruction methods that might not be always desirable.

In the case of conflicting evolutionary signals in the data, a tree might not
be the appropriate form to representing the phylogenetic relationships for a
set of sequences. Thus, a series of algorithms have been proposed that are
useful additions a to tree-based analysis. These methods can visualize to some
extent conflicting alternative taxon groupings that cannot be represented by a
single tree [6]. Nowadays, such algorithms are subsumed under the notion of
(phylogenetic) network methods [116].

6.1 From Trees to Split Networks

6.1.1 Split Systems and their Visualization

Recall the idea of representing a tree by a set of splits introduced in Section 5.1.
By definition, splits derived from a single tree are always compatible and, in
turn, a tree can be reconstructed from a set of compatible splits. In order to
combine phylogenetic information present in a set of trees based on sequences
from various genetic loci the collection of splits observed in the individual
trees can be collected and analyzed. Usually, not all splits are compatible and
thus strict or majority-rule consensus trees are applied to filter the set of splits
prior to tree reconstruction.
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right part of the graph, while the pairwise
incompatible splits AB|CDEF and AC|BDEF
form the net structure on the left. Note

that the contraction of one set of parallel
branches each obtains the corresponding
tree responsible for the incompatible split.

One way to visualize incompatible splits present in the data goes along the
lines with these consensus methods. Instead of stopping at the 50% cutoff
which guarantees that the outcome is, in fact, a tree, one keeps adding less
frequent splits obtained from a set of input trees to the split system, i.e. the set
of splits. More generally, the application of a cutoff value r (analogous to £ in
consensus trees) allows the selection of any split system S, that is present in at
least a portion r of all input trees. Pushing r below 50% (r < 0.5) may lead to a
splits system that no longer conforms to a tree. Visualizing such incompatible
splits systems provides insights into the extent and pattern of heterogeneity of
the phylogenetic signal in the data. In such a network, one split is represented
either by a single branch or by parallel branches, indicating incompatible
splits as in Figure 20, where AC|BDEF and AB|CDEF are incompatible.

It has been shown (see Ref. [73]), that a split system S, with cutoff fraction r
does contain any subset larger than |1/r] splits which are all pairwise incom-
patible. S, is said to be (|1/r|)-compatible. The split system in Figure 20, for
example, is 2-compatible, containing the subset of two pairwise incompatible
splits AC|BDEF and AB|CDEF. All split systems S, with r > 0.5 are 1-
compatible, which means that there are no incompatible splits and, hence,
the resulting topology would again be a tree.

The amount of pairwise incompatible splits obviously determines the com-
plexity of the network containing them. Median networks [4,72] can contain
cubes of dimension up to [1/7], and might thus be utterly complex. For
example, a split system Spp5 can be 4-compatible and, hence, needs four
dimensions to be visualized.

Median networks are a very general type of network which can be recon-
structed from the binary encoding of a split system. To this end, for each split
taxa on one side of the split are assigned ones, those on the other side zeros.
Then, intermediate states (representing the inner nodes in the median net-
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work) are computed from the binary sequences in a parsimonious fashion (see
Section 3.1). It has been shown [4,72] that by pruning branches from a median
network one can extract all the most parsimonious trees for the split system.
Due to the fact that median networks can grow arbitrarily incomprehensible,
less-complex approximations are often applied. Split graphs [6, 30, 31], for
example, attempt to filter the splits and branches drawn, to derive a planar
graph, i.e. a graph without intersecting edges. Refer to Ref. [72] for a more
detailed overview.

6.1.2 Constructing Split Systems from Trees

Commonly, split systems are collected from a set of input trees with equal
taxon sets as they are obtained, for example, from Bootstrap analysis or
MCMC sampling (see Section 3.5). Similar to consensus trees (see Section 5.1),
such split systems are visualized as so-called consensus networks [70]. Such
consensus networks (see Figure 20) visualize the area and the extent of con-
tradiction of the phylogenetic signal found in the input trees. However, like
supertrees (Section 5.2), network reconstruction is not restricted to trees with
equal taxon set, but can also be done from overlapping trees using the Z-
closure method [78]. In accordance to the amalgamation of trees to supertrees,
such networks are then called “super-networks” (Note, that the “super” prefix
in super-networks does not follow the same notation as in supertrees, super-
alignments, or superquartets, since is not network constructed from networks,
but from trees.)

6.1.3 Constructing Split Systems from Sequence Data

Although applications such as consensus networks and super-networks were
suggested quite recently, one should note that the basic idea of representing
evolutionary processes by networks rather than trees is not new.

In contrast to approaches for network reconstruction based on collections
of splits derived from trees, distance-based methods including split decom-
position [6] or Neighbor-Net [18] have been suggested for constructing split
systems directly from the data.

Applied to viral sequences from Ref. [124], methods like split decomposi-
tion and Neighbor-Net can easily identify the presence of the three recombi-
nant HIV strains SE7812_2, UG266 and VI1310-1.7 (Figure 21b and c). These
would have been wrongly classified based on the result of a tree reconstruc-
tion method like BioN]J (Figure 21a). To avoid such missinterpretation of the
data, phylogenetic networks should be taken into account at early stages of
the analysis.

Programs like SplitsTree [80], T-REX [101] NETWORK [3] and Spectronet
[72] provide easy to use means that can be readily applied to a phylogenetic
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Figure 21 Results for a set of HIV dataset from Ref. [124] containing
reference strains (A, B, C, D, F, G, H and J) together with three
recombinants (SE7812_2, UG266 and VI1310-1.7). (a) BioNJ tree
(eight splits), (b) split decomposition (14 splits) and (c) Neighbor-Net
(19 splits).

analysis. These packages were used to analyze viral data [29, 124], hybridiza-
tion events [98] and intra-specific data [4], respectively.

It should be noted that such split-based networks provide only a visual-
ization of ambiguities in the data and do not qualify as methods to infer the
reasons for the net-like structure [18].

6.2 Reconstructing Reticulate Evolution and Further Analyses

As mentioned above, in the case that different methods, different loci or
even just different parts of the very same gene show conflicting phylogenetic
signals, various causes might account for the observed conflicts.

One would certainly first check whether the conflicting evolutionary hy-
potheses are really significantly different [58, 66, 138]. If so, we can envi-
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Figure 22 A case of reticulate evolution. (a) The recombination
between strain V and W forms the recombinant strain R. The two
parts of the sequence reflect different evolutionary histories (b)
and (c) of the reticulation.

sion several biological mechanisms to produce reticulations, i.e. network-like
evolution. In the particular example of virus evolution, reassortment, i.e.
the mixture of viral chromosomes within a cell co-infected by different viral
lineages [86], and recombination, i.e. the reciprocal exchange of genomic
regions among chromosomes [113,117] both of which are highly abundant
in viruses [52,125], are two examples. Horizontal gene transfer [8, 25, 62]
and genome hybridization or fusion [28,103, 158] constitute other possibili-
ties. Sometimes reticulations may be simply due to parallel substitutions in
different organisms. In such a situation the loops in the network indicate the
occurrence of reverse or parallel mutations.

In general, purely split-based networks are not sufficient to illustrate an
event of reticulate evolution like the recombination shown in Figure 22, be-
cause one cannot represent this evolutionary history as a set of splits, although
one could map the separate gene trees. Hence, recently network methods like
hybridization networks, recombination networks or galled trees [64,79] have
been suggested to reconstruct reticulate evolution.

The pros and cons of the different algorithms still need to be evaluated.
However, the comparison of different phylogenetic networking strategies is
not easy. From Figure 21 it is apparent that Neighbor-Net is more liberal in
introducing noncompatible splits (19 splits in the Neighbor-Net compared
to 14 splits in the split decomposition network and eight splits in a fully
resolved tree.) Simulation studies, successfully applied in phylogenetic infer-
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ence, might be one way to evaluate accuracy and robustness of phylogenetic
network methods. To this end a carefully designed experimental setup is
required. An alternative approach is the introduction of optimality criteria
(least-squares, likelihood) in the network construction process. Unfortunately,
the development of phylogenetic networks in a likelihood framework is still
in its infancy [143,146,153]. Only with such methods is one able to decide
whether the nontree-like signals are biologically plausible or are merely an
artifact of the reconstruction procedure.

In this chapter, we have only touched upon some phylogenetic network
methods. Space limitations do not allow a full account of all existing methods.
The pyramidal clustering technique [26] is, like Neighbor-Net, an agglomera-
tive approach. Statistical geometry in sequence space [36] and its descendants
[109,145] are alternative approaches to summarize the extent of tree-likeness
in the data without reconstructing phylogenetic networks.

The field of phylogenetic networks will certainly profit from the data pro-
duced in whole-genome projects. As independently evolving DNA segments
of eukaryotic genomes may display different evolutionary histories, the cor-
rect history of the taxa, as carriers of these segments, is probably more ade-
quate. However, before we can reliably do this, we need to distinguish true
loops in a network from artificial loops generated by too simple assumptions
about the evolutionary process.
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Finding Protein-coding Genes
David C. Kulp

1 Introduction

Gene finding in genomic DNA sequences is a critical step in the functional
annotation of genomes. Over the past approximately quarter century in-
creasingly sophisticated methods have been developed to better understand
and catalog the mechanisms of transcription, splicing and translation, and to
predict the gene products, be they peptide sequences or RNA genes. With
the advent of large-scale sequencing, software programs were developed to
automate gene prediction.

In this chapter the common techniques for computational gene finding are
introduced. Basic concepts and terminology are given in Section 2. Sections 3—
5 discuss feature prediction for both content and signal features, and Section 6
introduces the standard dynamic programming formalism for incorporating
multiple features into complete gene structure predictions. Some performance
results for ab initio gene finding are given in Section 7. Practical gene finding
must also consider available experimental mRNA, protein and genomic se-
quence data. Some of these homology methods as well as other integrative
approaches are described in Section 8. Finally, the chapter concludes with
some caveats about the practical limitations of automated gene prediction.

2 Basic DNA Terminology

Since one DNA strand is the complement of the other, in DNA analysis only
one strand is stored in the databases. Which strand is represented is generally
arbitrary and unimportant, but in this chapter the represented sequence is
called the forward strand and the implicit complement is the reverse. A
DNA sequence is always represented, by convention, in the direction of DNA
replication. The left end of the sequence is referred to as upstream or 5 and
the right end is downstream or 3'.
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Figure 1 The central dogma of molecular cytoplasmic message. The message is
biology in eukaryotes. A primary transcript translated into peptides. Note that codons
region starting at the promoter is copied may span splice boundaries. Although not
into pre-mRNA. The transcript is then shown in this diagram, splicing is possible in

spliced in eukaryotes to produce the mature the untranslated regions.

For the purposes of this discussion, a gene is defined as the subsequence of
genomic DNA that is transcribed by RNA polymerase — usually Pol II when
referring to eukaryotic transcription. The gene structure further includes
those features on the mRNA involved with splicing and translation, i.e. the
splice and translation start and stop sites. For convenience, all of these features
are usually annotated with respect to the original DNA sequence as shown
in Figure 1. Transcription occurs on single-stranded DNA, on either the
forward or reverse strand. By convention the gene structure is annotated on
the informational or sense strand (not the template or antisense strand).

Although transcription has been observed to occur at the same physical
genomic position on both strands, we usually assume for simplicity that there
are no overlapping transcripts. Automatic gene finders must evaluate both the
explicitly represented sequence and the implicit reverse complement — this is
usually performed simultaneously.

Predicting genes in eukaryotes is considerably more challenging than in
prokaryotes because of splicing. Most transcribed mRNA (pre-mRNA) in eu-
karyotes is spliced into smaller sequences called processed or mature mRNA
through the excision of introns by the spliceosome complex, leaving a set of
concatenated exons to be passed to the ribosome. The introns are located
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between the 5 and 3’ splice sites, also called donor and acceptor sites. At
least 99% of 5’ splice sites begin with “GT” and 3’ splice sites end with “AG”,
called the consensus dinucleotides.

The spliceosome concatenates exons separated by often long introns. Each
exon can be as short as a few nucleotides. Thus, while gene finding in
prokaryotes involves indentifying a single contiguous coding sequence, gene
finding in eukaryotes requires a combinatorial search of many different possi-
ble exons.

3 Detecting Coding Sequences

Identification of the protein-coding domain sequence (CDS) between the start
and stop codons is of great interest because the translated peptide product can
be directly inferred from the CDS. The ribosome, after binding to the mRNA,
begins translation at an AUG triplet (ATG in DNA). The ribosome matches
these triplets, called codons, consecutively with tRNAs adding determinis-
tically one of the 20 amino acids to a polypeptide sequence for each codon
according to the genetic code (Table 1). The translation process is terminated
when one of three stop codons (UAA, UAG or UGA) is encountered. Thus, the
CDS on the DNA sequence is composed of a sequence of codons that code for

Table 1 The standard genetic code showing codon and amino acid single- and
three-letter abbreviations

TIT F Phe TCT S Ser TAT Y Tyr TGT C Cys
TIC F Phe TCC S Ser TAC Y Tyr TGC C Cys
TTA° L Leu TCA S Ser TAA * Ter TGA * Ter

TIG L Leu TCG S Ser TAG * Ter TGG W Trp
CIT L Leu CCT P Pro CAT H His CGT R Arg
CIC L Leu CCC P Pro CAC H His CGC R Arg
CTA L Leu CCA P Pro CAA Q Gin CGA R Arg
CIG L Leu CCG P Pro CAG Q GIn CGG R Arg
ATT 1 Ile ACT T Thr AAT N Asn AGT S  Ser

ATC 1 Ile ACC T Thr AAC N Asn AGC S Ser

ATA 1 Ile ACA T Thr AAA K 1ILys AGA R Arg
ATG M Met ACG T Thr AAG K Lys AGG R Arg
GIT V Val GCT A Ala GAT D Asp GGT G Gly
GIC VvV Val GCC A Ala GAC D Asp GGC G Gly
GTA V. Val GCA A Ala GAA E Glu GGA G Gly
GIG VvV Val GCG A Ala GAG E Glu GGG G Gly

Prokaryotes also use an additional GTG initiation codon. There are other rare genetic
codes as well. See http:/ /www.ncbi.nlm.nih.gov/Taxonomy / Utils /wprintgc.cgi.
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the corresponding protein, beginning with the start codon and ending with a
stop codon.

Note that the notions CDS and exon are not synonymous, although fre-
quently exchanged in gene-finding literature. Exons refer to those DNA
segments that are not excised by splicing, i.e. all of the sequence correspond-
ing to the mature mRNA. Exonic sequences can be either coding (CDS) or
untranslated regions (UTRs). A CDS typically begins and ends in the middle
of an exon. Introns are possible upstream and (rarely) downstream of a CDS.
Splicing need not occur on codon boundaries.

3.1 Reading Frames

There are six possible reading frames along double-stranded DNA - three on
each strand. A CDS beginning translation at position i is in reading frame
f = imodulo 3. Reading frames on the opposite strand are conventionally
labeled as — f. We say that a codon is in frame if its position modulo 3 is the
same as the CDS in question. In particular, an in-frame stop codon terminates
a CDS, but out-of-frame stop codons have no effect. A sequence of consecutive
codons between a start and stop codon is called an open reading frame (ORF).

Genes in prokaryotes are relatively easy to identify by searching for ORFs
of a minimum length, say 300 nucleotides. In random DNA, an in-frame stop
codon is expected about every 21 codons (63 nucleotides) and the chance of an
OREF longer than this becomes increasingly unlikely. Small ORFs can truly be
coding, especially in eukaryotes, due to splicing and asymmetric nucleotide
distributions can easily allow for long ORFs, requiring more sophisticated
pattern recognition methods, as described below.

3.2 Coding Potential

The distribution of codons is subject to evolutionary and biophysical con-
straints. The G + C content (fraction of G and C nucleotides) among genomes
varies, which affects codon frequencies for different organisms. Amino acid
frequencies are not uniform and arrangements of amino acids in polypeptides
are, of course, also not random. These effects, as well as other DNA and
mRNA structural and processing constraints, lead to biases in the frequency
and ordering of codons, called codon bias. Moreover, basal expression levels
have been observed to relate to the levels of available tRNAs, so codons in
higher expressed genes are more significantly biased towards the abundant
tRNAs [27]. Synonymous codon bias, closely related to codon bias, describes
the differing frequencies of codons coding for the same amino acid.
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Codon usage tables that list codon frequencies have been compiled for
many organisms (http://www.kazusa.or.jp/codon). To test for coding po-
tential is to assess whether the frequencies of codons in a candidate ORF are
statistically similar to the codon usage for the organism and these measures
are typically the heart of all gene-finding programs. For example, about 2.1%
of human codons are “ATC” and among its class of synonymous codons that
encode isoleucine (“ATC”, “ATT” and “ATA”), “ATC” is used about 47% of
the time.

A representative method of this class of coding potential measures is the
Gribskov codon preference statistic [26]. The relative frequency of a codon,
C, among its class of synonymous codons, fclass(c)(c ), is computed using
a codon-usage table derived from highly expressed genes and compared to
the relative frequency of the codon, gclass(c)(c)/ in a background model
according to position-independent nucleotide composition:

5(C) = log {fclass(c)(C)/gClaSS(C)(C)} '

For example, suppose the codon, C, is “ATC”, and its codon usage is as above
and the frequencies of A, T, C and G in the query sequence are (0.21,0.21, 0.29,
0.29). Then S(C = ATC) = log(0.47/0.41) = 0.14. The normalized sum of log-
likelihood ratios over a window w (of, say, 25 codons) provides an indication
of relative coding potential and expression. By convention, the normalized
sum is exponentiated to generate the final Gribskov statistic. Such methods
are often used in plots for preliminary visualization of a novel genomic se-
quence and are sometimes sufficient to support manual gene prediction in
prokaryotes (Figure 2).

Measures such as the Gribskov codon preference statistic lack consideration
for the positions of codons relative to each other. Observed dependencies
among adjacent codons led to the proposal of several measures based on
pairs of codons (dicodons). In an important benchmark paper, Fickett and
Tung [22], assessed most of the extant methods and their conclusion was
that dicodon (or hexamer, more generally) measurements were superior to
all other methods.

The three-periodic fifth-order Markov model is a particularly appealing
formulation of hexamer statistics that is widely used in modern gene finders.
Proposed by Borodovsky [7], such Markov models are used to represent the
probability distributions of the four possible nucleotides at each of the three
base positions in a codon. Suppose we are interested in a codon beginning
at position i composed of individual nucleotides b;, b; ;1 and b; 5. Three sep-
arate Markov models are defined: Py(b;|b;_5...b;_1), P1(bj;1|bi_4...b;) and
Py(biy2|b;_3...biy1). Each probability distribution is generated from simple
frequency counts of each possible nucleotide in the context of the previous five
nucleotides. Training sets of millions of codons are available from annotated
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4 Gene Contents

GenBank sequences. Assuming conditional independence, the probability
of a codon is just the product of the probabilities of the individual bases
bi, biy1, and b;;p. A separate null model is defined for noncoding bases,
Prc(bi|bi—5...bi—1). A log-likelihood ratio score for a codon starting at i is
then:

Z [logpf(bi+f|bi+f75~~bi+ffl) _loanC(bi+f‘bi+ff5~'bi+f71)} .
f=0..2

These scores can be accumulated over a window as with the Gribskov mea-
sure.

To obtain accurate estimates, a fifth-order Markov model requires suffi-
ciently large numbers of observations in each context. This is not always
available and, in some cases, even longer contexts may be plentiful. Salzberg
describes a variant that uses different context length depending on the avail-
able data [66].

The fact that statistics related to codon usage aid in the identification of
CDS and also in the estimation of expression levels indicates an inherent
classification weakness in the use of codon statistics, i.e. that genes with low
expression levels are more difficult to find because their statistics are weaker.
Low expressors are more difficult to detect experimentally as well, further
biasing the codon statistics gathered regarding known genes.

4 Gene Contents

In addition to the statistical regularities in CDS, other discriminating prop-
erties of coding exons and introns have been observed. These features of
variable-length DNA sequences are sometimes referred to as content.

For example, noncoding DNA is expected to have a relatively neutral distri-
bution of nucleotides with exceptions such as physical-chemical constraints
and the presence of repeats. Thus, models of noncoding DNA have been
devised similar to coding potential measures. A simple and common im-
plementation is the use of Markov models for intron and intergenic DNA
analagous to the three fifth-order Markov models for coding DNA. The log
probabilities of different models can then be compared. Figure 3 shows the
distribution of probabilities from fifth-order coding and intron models, and
the distribution of the difference in log probabilities.

Guigo and Fickett [29] showed that all content measures are highly corre-
lated with G + C bias. Thus, it is common to compute Markov distributions
by partitioning the training data into discrete isochores (extended regions of
G + C bias in the genome) based on windowed-G + C content [9].
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Figure 3 Score distributions for Markov chain
models of coding and intronic DNA. Three
Markov chains were trained on 53 183 460
coding bases and one Markov chain was
trained on 16 149 264 intronic bases from

the well-annotated protein-coding exons of
Caenorhabdlis elegans. For each of 48124
exons, a 99-nucleotide in-frame coding region
was scored using the coding model, two out-
of-phase coding models and the intron model.
(a) The distribution of log-likelihoods for fifth-
order Markov chains. (b) The distribution

of differences in log-likelihoods per base

of the fifth-order coding model versus the

intron and out-of-phase fifth-order models for
each coding exon. (Pairwise comparisons
with likelihoods from out-of-phase models
were only made if there were no in-frame
stop codons in the alternative frame.) The
implication here is that although the overall
distributions for the coding and noncoding
models are very similar, a comparison of
scores for individual exons shows good
separation (i.e. most model score differences
are greater than zero). This simply shows
that the fifth-order Markov models are
reasonably good at classifying coding
regions.



5 Gene Signals

The lengths of exons and introns differ — often significantly [32]. Exons
follow an approximately log-normal distribution with a mean length of about
140 bases in most eukaryotes, but the typical length of introns varies signifi-
cantly by organism. Many of the model organisms such as fly and worm have
intron lengths within a relatively tight range of about 70 bases — the minimal
required intron length for efficient splicing. Mammalian introns are typically
much longer than exons due to prolific insertions of repetitive elements; they
are rarely less than 100 bases and have a long exponential distribution to 10°
bases.

5 Gene Signals

Gene structure is defined by the start and stop positions in DNA of exons and
CDS. Through laboratory experimentation, molecular biologists have shown
that for each of these sites there are necessary, conserved motifs that govern
the transcription and translational machinery. With respect to gene finding,
Staden [75] distinguished these control sites as signals as compared to variable
length content. Signal features loosely correspond to binding sites or special
functional patterns recognized by the polymerase, spliceosome or ribosome.

If it were possible to automatically detect all signals independently, then
the gene-finding solution would be complete. For the most part, however, no
one signal can reliably be detected on its own. Later in this chapter we will
learn how to combine these measures along with coding potential to achieve
superior gene finding performance. First, we explore a few of the methods for
independent signal detection.

5.1 Splice Sites

Degenerate matches to a motif can be detected using a position-specific weight
matrix [74]. Weight matrices are commonly used in many biosequence ap-
proximate matching problems. A weight matrix is a (2-D) array W(1 < i <
m,1 < j <4) such that W(i, j) is the probability of nucleotide j at position i in
a motif of length m. Frequencies can be used to generate these probabilities,
priors can be introduced when data is sparse or more sophisticated contexts
can be represented such as dinucleotide frequencies (e.g. an order-1 Markov
weight matrix at each position resulting in a m x 16 matrix). For example,
almost all introns begin with the consensus dinucleotide “GT” and end with
“AG”, but the regions around the beginning and end of the intron (the splice
sites) have less specific nucleotide patterns. Figure 4 shows examples of
weight matrices for splice sites in C. elegans.
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Figure 4 C. elegans splice site weight matrices. Windows of 20
bases downstream of the 5" exon junction (“GT”, the beginning of the
intron, is positions 0 and 1) and 20 bases upstream of the 3’ exon
junction (“AG”, the end of the intron, is positions —1 and —2) were
selected from curated gene sequences [16].
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Given any test sequence represented as a 2-D matrix S(1 <i <m,1 <j <
4),where S; ; = 1 for the nucleotide j found at position i and 0 elsewhere, then

the likelihood of the feature can be defined simple as [T;—1_, [1j=1..4 WS;J .
Stormo presented thermodynamic, likelihood, and information theoretic jus-
tifications for the use of weight matrices [76].

Moving beyond the simple weight matrix is the maximal dependence de-
composition decision tree (MDD) method that captures local, but nonadjacent
dependencies [9]. The MDD method evaluates a set of rules to determine
which weight matrix to use to score the sequence. The rules are based on
the dependencies between positions in the motif. For example, in eukaryotic
5 splice sites, it can be shown that the distribution of nucleotides in the
conserved columns —3- - - + 6 around the consensus GT are most correlated
to the nucleotide G in position +5. Thus, the training set is partitioned
according to the “+5” value into two sets such that the score function for each
set is conditionally independent of that nonadjacent position. This leaves only
adjacent dependencies or independent positions, which can be easily modeled
using conventional weight matrices as above. (Other approaches have been
proposed to detect dependencies among nonadjacent bases with similar per-
formance characteristics, e.g. a Bayesian Network structure inference method
was proposed by Cai and coworkers [13].)

The primary limitation of weight matrices is the inability to model inser-
tions and deletions. To handle more complex motifs, profile hidden Markov
models (HMMs) (see also Chapter 3) and related probabilistic state machine
models can be employed in a similar manner as for protein sequences [20,42].

The 3’ splice site is slightly more complicated because the upstream pyrimi-
dine-rich branch site contributes to its recognition. However, the branch site
is variable and so not amenible to fixed-width matrix methods. As a result,
many recognition methods have been proposed for splice site recognition that
allow for the incorporation of multiple distinct sequence features as inputs
(branch site, splice site, intron content, exon content). One of the more
effective techniques for combining different sequence features is discriminant
analysis in which weights for different features are fitted to maximize the
discrimination between true and decoy sites [72,82].

Probably the current leading method for splice site prediction is GeneSplicer
— an extension of the MDD metric [59]. Other techniques include neural
networks, boolean logic rules, decision trees, support vector machines (SVMs)
and many others (e.g. Refs. [8,9,61,73]).

In addition to the conventional splice site recognition, about 1% of splice
sites have non-canonical dinucleotides. This is largely ignored in gene finding,
but is addressed by Burset and coworkers [11].

In general, recent methods achieve reasonable performance in splice site
detection, but are unavoidably burdened by large numbers of decoy sites,
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resulting in false-positive rates around 5% when recognizing about 90% true
splice sites.

5.2 Translation Initiation

Identifying the beginning of translation is perhaps surprisingly challenging.
Part of the difficulty is that the database is rife with experimentally uncon-
firmed start sites. In addition, the signal for start sites tends to be rather
weak. In prokaryotes, the Shine-Delgarno motif serves as a binding site for
the ribosome preceding the first codon. The consensus motif is AGGAGG,
but it can take on short and degenerate forms. Kozak observed that in
higher eukaryotes translation usually begins at the first start codon after
the transcription start site [41]. However, for the purposes of ab initio gene
finding, this is usually of little help since the beginning of the transcript is also
unknown and cannot be reliably predicted in large DNA sequences without
a high false-positive rate [21] (and even the annotated transcription start sites
are often wrong due to truncated mRNAs). In vertebrates, a consensus of
gccaccATGq (start codon in caps) is observed and weight matrices have been
developed from reliable start sites using first and second order models similar
to approaches for splice sites [2,40], but these methods are subject to high
false-positive rates.

Like with splice site detection, many of the conventional machine learning
techniques have been successfully applied including neural networks, linear
and quadratic discriminant analysis and SVMs [58, 64, 67, 85]. The most
successful independent predictor of translation initiation is an SVM classifier
that remarkably identifies almost 100% of start sites with well less than 1%
false positives on a standard test set [48].

5.3 Translation and Transcription Termination

Recognizing one of the stop codons (TAA, TAG or TGA) is trivial assuming
that the reading frame is known. Conversely, more probable stops are those
with high coding potential upstream of the site and low coding potential
downstream. The transcript following the stop codon is typically one long
exon. Splicing after the stop codon is rare.

Finally, transcription is terminated by a polyadenylation signal with a con-
sensus of AATAAA although there are many variants. The motif is small, is not
located predictably near other contextual features, is frequently unannotated
in the databases and may not even be present. Moreover, it is estimated
that in human about half of all transcripts have multiple 3’ termination sites
and these are often imprecisely cleaved [80]. Graber [25] describes a pseudo-
probabilistic model for detecting termination in yeast. Again, standard weight
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matrix and discriminant analysis methods have shown moderate success for
detecting the termination site [47,77]. In practice, transcription termination is
largely ignored in ab initio prediction. Instead, it is often considered sufficient
to detect just the gene structure from the start to stop codons.

6 Integrating Gene Features

So far, we have learned that there are different gene features (signals and con-
tents) each with statistically significant discriminative power. There are nu-
merous scoring methods for different features assessed independently, yet we
intuit that combining these features is likely to yield better results. However,
there is an exponential combination of possible labelings of exons, introns
and intergenic regions (i.e. any segment can begin or end at any position).
Thus, the gene finder is faced with two major problems: how to effectively
combine features and how to efficiently explore the possible gene structures.
The solution for both of these problems is using dynamic programming. In
some implementations, logical adjacent features are combined into a single
score and then a dynamic program is applied.

6.1 Combining Local Features

In the same way that multiple features were used as input to the long list of
machine learning classifiers in splice site recognition (Section 5), so too can
multiple features be combined to recognize larger functional units. Zhang is
a major proponent of this strategy of recognizing exons based on combined
information from the flanking signals and content, noting that the in vivo
recognition of exons in transcription is believed to largely be driven by the
interactions of DNA-binding complexes that straddle the exons, according to
the exon definition model [5,30]. Zhang has produced a suite of methods for
recognizing the 5" and 3’ UTR exons, initial coding exon, internal coding exons
and last coding exon using quadratic discriminant analysis, each recognition
module combining multiple, different features, with excellent performance
[77,83].

The choice of the fundamental functional units of gene recognition differ
among gene finding programs. For example, the nucleotide is the basic unit in
HMMGene, Genie treats splice sites and coding exons separately, and MZEF
combines these local features into a single functional unit. However, in all
cases, the same dynamic programming technique can be used to combine
these functional units into complete gene structure predictions.

141



142

5 Finding Protein-coding Genes

6.2 Dynamic Programming

Snyder and Stormo [71] showed how the optimal combination of features
could be obtained using dynamic programming. Let us define the states of
our gene finder as the different types of functional units in our gene model,
Q = q1...9m- We say that the sequence, X = xj...x;, is labeled by a
corresponding sequence of states, ® = ¢;...0¢,, called the “parse”, where
¢, € Q. Quite simply, a parse formally describes the gene structure, e.g.
intergenic DNA from position 0 to 100, 5 UTR from 101 to 150, initial CDS
exon from 151 to 200, etc.

The key idea behind dynamic programming is the assumption that the
score of a parse can be decomposed into independent segments or, at least,
segments that are only locally dependent. This independence assumption is
clearly violated in some cases. For example, tertiary protein structure obvi-
ously implies specific long-range interactions among codons. Nevertheless,
this is a reasonable approximation for gene finding that offers significant
computational advantage.

If every possible segment can be scored independently, then the parse with
the best score can be computed recursively. Given an input DNA sequence X
and possible states Q, then define a score matrix S(j, k) that holds the score
of the best parse of the subsequence x ...x; ending with a segment at x; in
state q. Define s(i, j, k) as the independent score of a segment from x;...x;
of state k. [These s(i, , k) terms are based on feature scores from one of the
many methods discussed and alluded to in the previous sections, such as
coding potential, splice site scores, etc.] If we assume for simplicity in this
formulation that any segment of any length can follow any other segment
(we will improve on this momentarily), then S(j, k) is defined as the best
score from all positions i < j in any possible state in Q plus the score of a
segment in state k from 7. ..j. For example, the best score for labeling a DNA
sequence such that that an initial exon ends at position 200 is computed by
considering the score for an initial exon starting from every position less than
200 following any of the other possible states (5’ UTR, intron, intergenic, etc.):

S(j,k) = max (S(i,1) +s(i,j k) - ©)
i<jleQ

The general form of this dynamic program is usually called the Viterbi algo-
rithm and the process of predicting a parse is often called decoding [23]. While
S(;) holds only the best score, it is straightforward to also simultaneously
compute a trace-back describing the parse that achieved the best score.

The formulation here is different from the conventional presentation of dy-
namic programming for biosequence analysis (Chapter 3) because segments
can take on arbitrary length. As a result, running time is quadratic in the
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length of the sequence and number of states — prohibitively expensive except
for very small sequences, but at least not exponential.

6.3 Gene Grammars

In order to ensure that the evaluation of all reasonable gene structures for
long DNA sequences can be achieved in acceptable running time we add
grammatical constraints that ensure only legal and sensible parses are consid-
ered. Dong and Searls [18, 68] were the first major proponents for describing
gene structure in linguistic terms. (For a thorough treatment in a modern
gene finding system, see also Ref. [46].) The key idea behind grammatical
constraints is that different segment states can only appear within specific
contexts. For example, an intron can only following an exon. The grammatical
constraints for genes can be expressed in a so-called regular grammar and can
be visualized as a finite state machine. Figure 5 shows such a state diagram
for a simplified gene model.

We call neighboring pairs of states transitions (e.g. intron following exon).
In addition to strict contextual constraints on state transitions, we observe that
some state transitions are allowed, but are less likely than others. For example,
it is less likely that an intron will be followed by a terminal exon than an
internal exon. We define t(I, k) as the score for a transition from state [ to state
k. These are usually assigned based on frequencies of observed transitions
in training data. In addition, we define a function T (k) that returns a set of
allowable previous states for k.

One specific type of transition constraint in T(-) is especially important,
i.e. the frame constraint. In order to ensure that the total number of bases in
the CDS is a multiple of 3, states must be created to ensure that introns split
codons in a frame consistent manner. For example, if one base precedes an
intron then two bases must follow it before the next full codon (see Figure 5.)

In Section 4 we observed that exons and introns had predictable length
distributions as well as maximum and minimum lengths that are rarely or
never exceeded, e.g. coding exons are rarely larger than a few thousand bases
and introns are almost never smaller than about 50 bases. Therefore, we
restrict the allowable length segments considered in our dynamic program
by introducing min(k) and max(k) values for each state k.

From this, we have an improved method for scoring possible parses that
extends Eq. (1) as:

S(j, k) = max S(i, 1) +s(i,j, k) +t(l, k) (2)
i<j, 1eT(k)
j—i>min(k

)
)

j—i < max(k) .
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Figure 5 A finite state automaton (FSA) that
recognizes gene structures. This simplified
FSA recognizes legal protein-coding gene
structures such that the total CDS length

is a multiple of 3. Nucleotides are matched
along the arcs and states are associated with
nodes. N represents any base. “—” indicates
negation and “+” indicates one or more
repeated times. The score functions s(i, j, k)
provide scores for sequences along the arcs.

I € T(k) if there is a directed edge from k to
1. t(1, k) map to the possible outward arcs for
node k. In this model, a single variable length
codon state is used. In more sophisticated
models there might be elaborate splice site
states, states for initial, internal and final
coding exons, promoter and polyadenylation
sites, and reverse strand genes. The double
circle is the start and end state.

The addition of length and state transition restrictions significantly im-
proves running time, while ensuring that only meaningful parses are consid-
ered. In addition, software engineers for different systems have employed
other tricks to improve the speed of gene prediction to approximately linear
in the length of the input DNA sequence [9,46,55].

When the segment scores and transition scores are defined as log proba-
bilities, which is easily derived from feature scoring methods such as weight
matrices and Markov models, then we say that such a model of gene structure
is a stochastic regular grammar or equivalently a HMM. (Note that sometimes
the inclusion of variable length segments in the model is called a generalized
HMM (GHMM) [44] or a state-duration HMM [60].) The dynamic program is
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then a maximum likelihood optimization:

argmq?x(— log P(X,®)) .

Such models are called generative models because the score functions are
decomposed into conditional probability terms of the form —log P(x; . .. x;|qx),
corresponding to the s(i,, k) score function, and — log P(q;|qx), the t(I, k)
transition score. It is sometimes convenient to describe HMMs as generating
the sequence X via a random walk through the finite state machine. The
decoding step is, then, the prediction of the most likely random path, &, that
generated the observed data (see also Chapter 3).

Almost all of the successful, modern gene finders are based on this HMM
framework including the most widely used ab initio gene finders GENSCAN
[9] and FGENES [65]. Furthermore, we will shortly see that improvements
to gene finders with respect to the inclusion of homologous protein, aligned
c¢DNA and orthologous DNA are all extensions of this basic HMM framework.

An additional advantage of the probabilistic framework is that the score
functions can be learned systematically using standard learning procedures,
i.e. a maximum likelihood optimization using the forward-backward algo-
rithm [60]. In practice, the parameters for the different score functions are
trained independently in most gene-finding programs, but HMMGene [43]
is a notable exception that achieves good performance. In addition, using
the same algorithm for a test sequence it is possible to obtain the score of
any single feature (such as an internal coding exon) in the context of all
possible parses that might contain it. Studies have shown that these scores
are meaningful metrics for ranking the confidence of different segments of a
prediction [9,46,63].

7 Performance Comparisons

Performance of different gene finders has been assessed by several researchers
including studies by Reese and coworkers [62] on Drosophila and Rogic and
coworkers [63] on mammalian sequences. First, in Reese and coworkers, a
2.9-Mb contiguous DNA sequence was subjected to automated analysis by
a battery of gene-finding programs and compared with the gene structures
from a careful manual curation. Assessing false-positive rate (over-prediction)
in this test was problematic because full-length gene structures were known
with certainty for only a fraction of genes, full-length cDNAs were rejected
if they did not meet certain automatic criteria such as having a good splice
site score and for those uncertain genes there was a serious bias because
automated gene finder predictions had been used by the manual curators to
guide their annotations. Five ab initio gene finders were tested and standard
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evaluation statistics were collected (using the same metrics as in Ref. [12]).
Table 2 presents the performance predicting individual exons and the entire
CDS from start to stop codon. The only strong conclusion that can be made
is that HMM-based gene finders (FGENES, Genie and HMMGene) perform
comparably and superior to the other methods. We also know from these
tests and others that gene finders naturally perform better when trained with
examples from the organism being tested or related species [78].

Table 2 Ab initio performance for the Adh locus in Drosophila

FGENES (v1/v2/v3) GenelD (v1/v2) Genie HMMGene Grail

Exon
Sn 0.65 044 0.75 0.27  0.58 0.70 0.68 0.42
Sp 049 0.68 0.24 029 0.34 0.57 0.53 0.41
Missing  0.11  0.46  0.06 054 0.21 0.08 0.05 0.24
Wrong 0.32 017 0.53 048 047 0.17 0.20 0.29
CDS
Sn 0.30 0.09 0.37 0.02 0.26 0.40 0.35 0.14
Sp 0.27 0.18 0.10 0.05 0.10 0.29 0.30 0.12
Missing  0.09 035 0.09 044 0.14 0.05 0.07 0.16
Wrong 024 025 052 0.22  0.30 0.11 0.15 0.24

Sn refers to the fraction of known genes that were predicted exactly correct. Sp is the fraction
of predicted genes that were exactly correct. Missing is the fraction of known genes with no
overlapping prediction. Wrong is the fraction of predictions that do not overlap annotated genes.
High Sn and Sp and low Missing and Wrong values are better. Sn and Missing were determined
from a different test set than Sp and Wrong. FGENES and GenelD were run under multiple
parameter settings to produce different sensitivity /specificity trade-offs. See Ref. [62] for details.
Importantly, different versions of these programs have typically been developed since these tests,
so conclusions should be qualitative regarding methodology only.

Recognizing that biases could exist in gene prediction programs if testing
data included gene structures used in training, Rogic and coworkers assessed
the performance of seven ab initio gene finders on 195 mammalian gene struc-
tures that were submitted to GenBank after the programs were released. In
the overall results shown in Table 3, the ranges of performance measures is
comparable to that for invertebrates and the gene finder HMMGene shows a

Table 3 Ab initio performance for mammalian genes [63]

FGENES GeneMark Genie GENSCAN HMMGene Morgan MZEF

Exon
Sn 0.67 0.53 0.71 0.70 0.76 0.46 0.58
Sp 0.67 0.54 0.70 0.70 0.77 0.41 0.59
Missing ~ 0.12 0.13 0.19 0.08 0.12 0.20 0.32
Wrong 0.09 0.11 0.11 0.09 0.07 0.28 0.23

Measures are interpreted as in Table 2.
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significant advantage over other methods. However, to complicate matters,
Rogic and coworkers also found that gene finder performance was frequently
highly dependent on gene or genome characteristics such as type of CDS exon
(initial, internal or terminal) and G + C content.

A third study, by Guigo and coworkers, has shown that gene finders per-
form notably worse on long DNA sequences than for the short test sequences
that contain only one gene found in assessment studies [28], so mammalian
performance shown here is probably an upper bound and should be evaluated
only relatively.

8 Using Homology

A second class of gene finders is those that take advantage of homologous
sequences from databases of cDNA, DNA and protein sequences. Align-
ments of cDNA indicate the exon-intron structure. Conserved sequences
between orthologous chromosomes indicates functional DNA, i.e. regulatory
and protein-coding sequences, and protein-DNA similarity identifies putative
CDs.

8.1 cDNA Clustering and Alignments

The gold standard for gene structures are derived from the alignment of
cDNAs (complementary DNA from mRNA) to DNA. A full-length cDNA
requires only the identification of the CDS, which is typically assumed to be
the largest ORE. However, full-length cDNAs are rare. Instead, tens of millions
of cDNA fragments called expressed sequence tags (ESTs) with lengths of
several hundred bases have been deposited in GenBank. These sequences
are typically random sequencing reads from the 3’ or 5’ ends of libraries of
cloned full-length or partial mRNAs. The primary difficulties with ESTs are
the relatively short size, the frequent sequencing errors and the sheer number
of such sequences.

Occasionally ESTs are analyzed individually in the hope of identifying
fragments of coding regions. For this purpose, specialized HMMs similar to
profile HMMs (see Chapter 3) have been developed to identify the reading
frame with the highest coding potential while allowing for frame shifts that
interrupt the CDS [35]. The methods employ similar, but simpler, Markov
model scoring metrics and state machines than those used for gene finders in
DNA (Figure 6).

Most EST analysis is based on assembling multiple EST sequences to form
longer cDNA sequences. If no genome sequence is available, then rapid
clustering methods are often employed to generate groups of homologous
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Figure 6 A finite state automaton for labeling the CDS (codons of “b0
b1 b2”) in EST sequences allowing for frameshifts. A function such as
the fifth-order Markov model is used for the scoring of the b0, b1 and
b2 arcs.

ESTs [10]. These groups are then input to a conventional fragment assembler
(see Chapter 2). This approach typically generates undesirable chimeric or
partial assemblies and alternative isoforms can cause havoc.

In the conventional assembly approach, each EST contributes to just one
assembled cDNA, but if multiple isoforms exist, then an EST should naturally
be a part of multiple cDNA assemblies. A splice graph captures all of the
possible isoforms implied by a set of ESTs [33]. In the splice graph, a virtual
genome sequence is deduced, nodes are positions in the genome, and arcs
connect positions that are adjacent in aligned ESTs. Figure 7 shows an example
visualization of a splice graph. The splice graph makes clear that the number
of possible isoforms can, in the worst case, be exponential to the number of
exons.

With a completed genome sequence, cDNAs can be aligned to the DNA,
which serves as a template, and the gene structure can be delineated by the
connected set of overlapping, aligned ESTs. This is superior to the previous
cluster-based transcript assembly because (i) errors in ESTs can be corrected
by comparison with DNA, (ii) chimeras are less likely and (iii) the genome is
directly annotated providing exon—intron structure.

Figure 7 Splice graph. Nodes are positions Arcs between boxes are introns. Assembled
along the horizontal axis, representinga DNA  ESTs are shown below the splice graph.

sequence. (When no genome sequence Dotted lines show where an EST spans

is available, the DNA sequence is virtual across a DNA gap. Note that the genomic
and ambiguous, i.e. implied exclusively DNA is not necessary to build a splice graph.
by the differences between homologous However, errors in the EST sequences can

ESTs.) Nodes are connected based on EST easily introduce false variants. To address
evidence. Those nodes adjacent on the DNA  this, multiple ESTs are usually required to
are merged into exons (numbered boxes). confirm alternative splicings.
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Highly accurate programs for cDNA-DNA alignment that include special
handling for small exons, accurate splice site definition and EST errors are
now available, most notably GMAP [79] or BLAT [38]. Imposing strict align-
ment criteria is usually advisable such as requiring that at least 90% of the EST
be aligned with 95% identity in the aligned region. Even stricter alignment
criteria are common, such as requiring that all intron gaps in an alignment
conform to consensus dinucleotide splice sites and span a minimal number of
genomic bases.

EST sequences are obtained from the 3’ and 5’ ends of cDNA clone inserts
(and sometimes random internal positions). Due to the construction of the
vector sequence containing the cDNA insert, sequencing of the two ends
occurs on opposite strands of the insert. By convention these sequences
are deposited in GenBank without reverse complementing and so usually
a 5" EST sequence is of the sense strand and a 3’ EST is of the anti-sense
strand. Therefore, the orientation of a gene on the DNA can be inferred by
comparing the EST read direction and the orientation of the sequence in the
EST-DNA alignment. However, the labeling of the read direction and the
strand that is submitted to the database is only a convention and there are
frequent errors in the EST database, mostly among older database entries due
to lane shifts from gel-based sequencing machines [1]. Other characteristics
can be used to infer orientation of the EST including comparisons to other
aligned sequences, presence of a poly-A tail (or poly-T prefix), presence of
a polyadenylation signal and, most effectively, the consensus dinucleotides
in the splice sites, if the EST splices. Shendure and Church [69] describe
one laboratory’s orientation procedure although no single software program
currently exists to perform this orientation. (A lingering problem remains that
EST-DNA alignments may indicate anti-sense transcription — a phenomenon
that has been increasingly documented [81]; however, conventional gene
modeling and genome annotation prohibit overlapping transcripts.)

Once individual ESTs are oriented and aligned, longer transcripts can be
derived by merging gene structures implied by overlapping ESTs. As with
EST analysis without a genome sequence, conflicting alignments can imply
a large number of putative alternative splice forms. The PASA program is
one of several programs that can be used to generate a a set of such putative
transcripts from EST-DNA alignments [31,37]. In PASA, a dynamic program,
is employed to assemble a minimal set of unique transcripts from compatible
EST alignments, i.e. those ESTs that agree in all of their inferred splicings.

Not all genes will be present in EST libraries because differentially ex-
pressed genes may be absent or expressed at low levels in the sampled tis-
sues. Furthermore, due to limitations in full-length cDNA cloning and the
long lengths of some transcripts, many genes are not fully covered by EST
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sequences. Thus, assembly of ESTs tends to result in fragmented, partial
transcripts.

One method that has been used to specifically deal with the incomplete EST
information is Genie [46]. The method assumes that assembled transcripts
from EST-DNA alignments define true, but incomplete, gene structures and
so the ab initio gene-finding algorithm described in Section 6.3 is employed
only in the breaks between alignments. This can be achieved in a straight-
forward manner by modifying the t(;) transcription score function to prohibit
transitioning into some states at specific positions within the sequence de-
pending on the EST-DNA alignment evidence (e.g. transitioning into an exon
state in the middle of an EST-defined intron is prohibited in the dynamic
program).

Lastly, it is possible to leverage the EST data to infer gene bounds even
when only incomplete EST alignments exist using EST mate pairs. For some
cDNA inserts both the 5" and 3’ ends have been sequenced. When both ESTs
are aligned to the same chromosome, within a reasonable genomic distance,
and compatibly ordered and oriented, then one can infer that the entire region
between the mate pairs corresponds to a single primary transcript. In a similar
way as above, an ab initio gene finder can be constrained to predict exactly one
primary transcript in the defined region.

8.2 Orthologous DNA

When two organisms are sufficiently similar to identify and align orthologous
genomic sequence, but sufficiently distant so that nonfunctional DNA has
mutated, then the comparative analysis of the two genomes can be directly
applied to gene finding (see also Chapter 37). Organisms such as chicken and
mouse are of a reasonable evolutionary distance from human to support this
sort of comparison. The key assumptions are that the number and approx-
imate content of CDS regions between the two species are well conserved,
while introns, UTRs and intergenic DNA have drifted significantly from the
common ancestor. Thus, if the conserved regions can be identified, then they
are most likely coding regions and so the gene-finding problem is to combine
these conserved CDS segments into a more complete gene structure.

There are two main approaches to the problem: ad hoc weighting schemes
and principled pair HMMs. Twinscan [39] and SGP2 [56] are examples of
the former method. For example, in Twinscan, the dynamic program corre-
sponding to the gene grammar described in Section 6.3 is augmented with
scores from BLAST sequence similarity matches between the two genomes.
In other words, for any candidate region x; .. - Xj in a CDS state, gy, the score
function s(i, j, k) is improved according to the quality of the genome-genome
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Figure 8 Pair HMM. Two DNA sequences are generated
simultaneously from left to right. At each step, a subsequence
(possibly of length zero) is emitted for each genome. The score

for the pairs of subsequences is based on the local statistics like a
conventional ab initio gene finder as well as the similarity of the two
subsequences. (From Meyer and Durbin [51].)

alignment in that region. Thus, the method performs gene finding on one
genome sequence using the second genome as evidence.

The second, more elegant, approach is to simultaneously align and label
both genome sequences according to a probabilistic model. DoubleScan [51]
and SLAM [3] embody this class of gene finders. The approach, called a pair
HMM, is a generalization of the ab initio method and is best understood by
considering an HMM-based gene finder as a generative model that produces
labeled sequences of DNA, as previously described in Section 6.3. In a con-
ventional HMM, one or more nucleotides are emitted for each state; in a pair
HMM two sequences of nucleotides are emitted for each state. To address
asymmetries such as inserts in one genome additional states must be added
to allow for null string emissions in one genome. Figure 8 shows a diagram of
the generative process.

Our score function s(i, j, k) is extended to consider the scores of pairs of
segments, i.e. s(i,j,m,n,k) is the score for simultaneously emitting DNA se-
quences X;...x; and Y ...y, in state gx. The dynamic program for a pair
HMM is not much different from the conventional single sequence HMM
although the pair HMM must consider, theoretically, all possible segments
Xj...Xj and Ym ...y in every possible state, which adds a very significant
computational burden. In practice this computational burden may not be
worth the investment since the ad hoc score enhancement methods are fast
and have been shown to perform well.
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Conserved noncoding sequences (CNS), which are usually regulatory se-
quences, are often a problem for comparative modeling methods because
they are interpreted as coding. In some implementations special CNS states
are introduced and, in theory, if the CNS sequences lack sufficient coding
potential, then they will be labeled CNS instead of CDS. In practice, mis-
predicting CNS remains a challenge, particularly for highly conserved genes.

The comparative method has also been extended to model the proper phylo-
genetic distance among three or more genomes in a phylo-HMM [70] and also
to successfully annotate very closely related species such as among primates
[50].

8.3 Protein Homology

The simplest application of protein homology is the identification of putative
CDS subsequences from sequence alignment. For example, BLASTX [24] per-
forms six-frame translation of a DNA query sequence and rapidly identifies
those regions that are similar to known proteins. The user must assemble the
fragmentary evidence.

The most elegant and specific use of protein homology is employed by the
GeneWise [6] program, which merges the profile HMM used in protein remote
homology searching (see Chapter 11) and the gene finding HMM model
described in Section 6.3 into a unified DN A—protein alignment. The method
is a pair HMM, similar to those used in comparative genomic analysis, but
in this case the model is more complex because the two generated sequences
use different alphabets, and additional constraints must be included to ensure
proper pairing of amino acids and codons according to the genetic code. The
model also includes a basic set of splice site recognition states to allow for
the alignment of the protein sequence across introns (similar to cONA-DNA
alignment) as well as nucleotide insertion and deletion states to allow for
errors and frame shifts.

GeneWise produces only partial gene structures corresponding to the region
of protein alignment on the DNA. However, importantly, such alignments
provide highly accurate predictions when a sufficiently close homolog is avail-
able. Moreover, the prediction of splice sites is particularly good due to the
constraint of the alignment of the protein across introns.

HMM gene-finding programs such as FGENES++ [65] and Genie [45] em-
ploy a more ad hoc approach in which scores for coding features are artificially
inflated when database similarities are found, in a similar manner as the
comparative genome program Twinscan [39]. As a protein-DNA alignment
improves, the score for labeling the DNA region as coding improves. In this
way, a complete gene structure is predicted with protein homology evidence
contributing, but it is not used exclusively nor is it required. Such an approach
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requires careful tuning of the contribution of protein homology to avoid over-
prediction or over extension of coding exons.

8.4 Integrative Methods

There has been much work on integrative methods of combining multiple
gene finders and homology evidence, both principled and ad hoc, for whole
genome analysis, but we do not review them in detail here. Several programs
have attempted to integrate the predictions of multiple gene finders within
a probabilistic model (e.g. Refs. [4,53,57]). Other programs provide an ab-
stract framework of an HMM gene finder that allows a software developer
to incorporate arbitrary feature scoring methods [34]. Most genome centers
and informatics sites maintain “pipelines” for automated annotation. Many
of these are not portable or are tightly bound to other institutional soft-
ware infrastructure. Two noteworthy examples are the annotation pipelines
of the NCBI (http:/ /www.ncbi.nlm.nih.gov/genome/guide/build.html) and
Ensembl [17]. Both include sophisticated and comprehensive methods for
reliable whole genome gene prediction.

9 Pitfalls: Pseudogenes, Splice Variants
and the Cruel Biological Reality

As this chapter concludes its tour of gene-finding methods, it is worth a brief
mention of some of the unfortunate difficulties that make gene prediction a
hard problem that is unlikely to be satisfactorily solved in the near term. The
challenges almost all lie in the complexity of genome organization that is not
(and often cannot be) modeled by the various gene-finding techniques [52].
Here are several issues:

e Exons can be extremely small — only a few nucleotides, which is insufficient
to detect coding potential. Worse, re-splicing has been observed in which
an exon is entirely removed.

e Noncanonical splice sites are expected to occur, on average, about once
every 10 genes in the genome; however, with few exceptions, methods
assume GT/AG splice sites.

e Pseudogenes are numerous in many organisms including the human. There
are specialized programs to detect retrotranscribed and nonfunctional genes
(e.g. Ref. [15]), but young pseudogenes are often quite difficult to distin-
guish by sequence statistics.
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e Alternative splicing is prolific in higher eukaryotes. It is estimated that 60%
of human genes have multiple isoforms. We saw in Section 8.1 that cDNA
methods can be used to enumerate possible splice variants. HMM-based
methods like those we learned here can be used to generate suboptimal
parses that sometimes represent alternative isoforms [14]. Recent predictive
methods have been developed for detecting alternative splice sites [19].
Nevertheless, alternative splicing remains a serious impediment to auto-
mated genome annotation.

e Untranslated exons make up a large fraction of the typical gene, yet there is
very little, if any, signal differentiating UTRs from intergenic DNA.

o The size of most genomes implies that gene-like patterns are likely to occur
frequently in intergenic DNA. In order to control false-positive rates, gene-
finding programs must also sacrifice true positives. Studies of gene finders
in large DNA sequences reveal frequent overprediction [28].

e Anti-sense transcription [81], high rates of transcription outside of known
protein-coding genes [36] and large classes of small noncoding RNAs have
been observed [54]. Besides causing difficulties in the use of cDNA-DNA
alignment evidence for gene finding, these findings emphasize that im-
portant, functional, nonprotein-coding genes are being transcribed at high
rates and that new classes of genes may yet be discovered. Alternatively,
the high rates of transcription observed by Kampa and coworkers [36] also
suggests that the genome is less of a programmed machine and more of a
stochastic process in which nonfunctional transcription may be occurring at
high levels. Such “noise” in the system is insurmountable using sequence
analysis alone.

As a result of these and other complications, manual genome annotation is
expected to remain the definitive source for gene structures for a long time.
An excellent source of manual curations is the VEGA system [49].

10 Further Reading

Chapter 3 of this book introduces HMMs. Further background on HMMs
and probabilistic modeling of gene sequences — the techniques that dominate
gene finding — is best found in the book Biological Sequence Analysis [20] and
Rabiner’s oft-cited tutorial [60]. An excellent gene-finding bibliography is
maintained by Wentian Li (http://www.nslij-genetics.org/gene/). The pri-
mary literature for generalized HMMs (e.g. GENSCAN [9] and Genie [44,46])
and comparative gene finders (e.g. DoubleScan [51], SLAM [3], and Shadower
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[50]) is particularly good for new readers. There are many reviews of gene-
finding techniques and Zhang's [84] is a relatively recent good one. The
website www.genefinding.org is also a useful resource for developers.
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Analyzing Regulatory Regions in Genomes
Thomas Werner

1 General Features of Regulatory Regions in Eukaryotic Genomes

Regulatory regions share several common features despite their obvious di-
vergence in sequence. Most of these common features are not evident directly
from the nucleotide sequence, but result from the restraints imposed by func-
tional requirements. Therefore, understanding of the major components and
events during the formation of regulatory DN A—protein complexes is crucial
for the design and evaluation of algorithms for the analysis of regulatory
regions. Transcription initiation from polymerase II (Pol II) is the best un-
derstood example so far and will be a major focus of this chapter. However,
the mechanisms and principles revealed from promoters are mostly valid for
other regulatory regions as well.

Algorithms for the analysis and recognition of regulatory regions draw
from the underlying biological principles, to some extent, in order to generate
suitable computational models. Therefore, a brief overview over the biolog-
ical requirements and mechanisms is necessary to understand what are the
strengths and weaknesses of the individual algorithms. The choice of param-
eters and implementation of the algorithms largely control the sensitivity and
speed of a program. The specificity of software recognizing regulatory regions
in DNA is determined, to a large extent, by how closely the algorithm follows
what will be called the biological model from hereon. Several overviews of
this topic have been published [27,96].

1.1 General Functions of Regulatory Regions

The biological functionality of regulatory regions is generally not a property
evenly spread over the regulatory region in total. Functional units usually
are defined by a combination of defined stretches that can be delimited and
possess an intrinsic functional property (e.g. binding of a protein or a curved
DNA structure). Several functionally similar types of these stretches of DNA
are already known and will be referred to as elements. Those elements are
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neither restricted to regulatory regions nor individually sufficient for the
regulatory function of a promoter or enhancer. The function of the complete
regulatory region is composed from the functions of the individual elements
either in an additive manner (independent elements) or by synergistic effects
(modules).

1.2 Most Important Elements in Regulatory Regions

Transcriptional regulation depends on sequence elements that are directly
accessible from the genomic DNA sequence such as transcription factor (TF)-
binding sites (TFBSs), repeats and hairpins (repeats that can form hairpin-like
structures by self-complementarity). In addition, various elements not easily
detectable in the sequence are important. Most of these affect chromatin
structure and accessibility such as histone acetylation and methylation status
as well as DNA methylation status. Such phenomena not directly linked to
the local DNA sequence are usually summarized under epigenetic effects.

1.3 TFBSs

Binding sites for specific proteins are most important among the sequence
elements. They consist of about 10-30 nucleotides, not all of which are equally
important for protein binding. As a consequence, individual protein-binding
sites vary in sequence, even if they bind to the same protein. There are
nucleotides contacted by the protein in a sequence-specific manner, which
are usually the best-conserved parts of a binding site. Different nucleotides
are involved in DNA backbone contacts, i.e. contacting the sugar-phosphate
framework of the DNA helix (not sequence specific as they do not involve
the bases A, G, C or T). There are also internal “spacers” not contacted by
the protein at all. In general, protein-binding sites exhibit enough sequence
conservation to allow for the detection of candidates by a variety of sequence
similarity-based approaches. Potential binding sites can be found almost
all over the genome and are not restricted to regulatory regions. Quite a
number of binding sites outside regulatory regions are also known to bind
their respective binding proteins [57]. Therefore, the abundance of predicted
binding sites is not just a shortcoming of the detection algorithms, but reflects
biological reality. Often it is not possible either to identify individual binding
proteins as they might bind as part of multi-protein complexes [68]. This
illustrates another important point: TF binding in vivo is usually context
dependent. The isolated TF will bind to a cognate site quite differently if
brought together in a reaction tube as naked protein and oligonucleotide
probe than in vivo where adaptive DNA structure and a host of other proteins
are present. As became evident from several chromatin immunoprecipitation
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(ChIP) studies, even in vivo binding of a TF does not automatically imply
a function in transcription control as was found in a genome-wide study
which identified many more cAMP response element-binding protein (CREB)-
binding sites than CREB-regulated genes [45].

1.4 Sequence Features

Regulatory DNA also contains several features not directly resulting in rec-
ognizable sequence conservation. For example, two copies of a direct repeat
(approximate or exact) are conserved in sequence with respect to each other,
but different direct repeats are not similar in sequence at all. Nevertheless,
direct repeats are quite common within regulatory DNA regions. They consist
either of short sequences, which are repeated twice or more frequently within
a short region, or they can be complex repeats, which repeat a pattern of two or
more elements. (More details on sequence repeats and how to detect them can
be found in Chapter 7.) Repeat structures are often associated with enhancers.
Enhancers are DNA structures that enhance transcription over a distance
without being promoters themselves. One example of a highly structured
enhancer is the interleukin-2 enhancer [74]. Other sequence features that are
hard to detect by computer methods include the relatively weak nucleosomal
positioning signals [46], DNA stretches with intrinsic three-dimensional (3-D)
structures (like curved DNA, e.g. Ref. Ref. [81]), methylation signals (if there
are definite signals for methylation at all) and other structural elements.

1.5 Structural Elements

Currently, secondary structures are the most useful structural elements with
respect to computer analysis. Secondary structures are mostly known for
RNAs (see Chapter 14) and proteins (see Chapter 9), but they also play im-
portant roles in DNA. DNA can form double hairpins called cruciform DNA
representing the hairpin structures of RNA and can be important for transcrip-
tional regulation [59]. Potential secondary structures can be easily determined
and even scored via the negative enthalpy that should be associated with the
actual formation of the hairpin (single-strand) or cruciform (double-strand)
structure. Secondary structures are also not necessarily conserved in the
primary nucleotide sequence, but are subject to strong positional correlation
within the 3-D structure, i.e. the orientation of the double helix in space.
Without any doubt 3-D aspects of DNA sequences are very important for the
functionality of such regions. However, existing attempts to calculate such
structures in reasonable time have met with mixed success and cannot be used
for a routine sequence analysis at present. Part of that difficulty is that DNA
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structure can be quite flexible and structural changes are readily induced by
interacting proteins [68].

1.6 Organizational Principles of Regulatory Regions

This section will mainly concentrate on eukaryotic polymerase II promoters,
as they are currently the best-studied regulatory regions.

1.6.1 Overall Structure of Pol Il Promoters

Promoters are DNA regions capable of specific initiation of transcription (start
of RNA synthesis) and consist of three basic regions (see Section 1.6.3). The
part determining the exact nucleotide for transcriptional initiation is called the
core promoter, and is the stretch of DNA sequence where the RNA polymerase
and its cofactors assemble on the promoter.

The region immediately upstream of the core promoter is called the proxi-
mal promoter and usually contains a number of TFBSs responsible for the as-
sembly of an activation complex. This complex in turn recruits the polymerase
complex. It is generally accepted that most proximal promoter elements are
located within a stretch of about 250-500 nucleotides upstream of the actual
transcription start site (TSS).

The third part of the promoter is located even further upstream and is called
the distal promoter. This region usually regulates the activity of the core and
the proximal promoter, and also contains TFBSs. However, distal promoter
regions and enhancers exhibit no principal differences. If a distal promoter
region acts position and orientation independent it is called an enhancer.

1.6.2 TFBS in Promoters

The TFBSs within promoters (and likewise most other regulatory sequences)
do not show any general patterns with respect to location and orientation
within the promoter sequences, although particular functionality may be as-
sociated with a specific location or association within the promoter [89].
Even functionally important binding sites for a specific TF may occur almost
anywhere within a promoter. For example, functional activating protein 1
(AP-1, a complex of two TFs: one from the Fos and one from the Jun family)-
binding sites can be located far upstream, as in the rat bone sialoprotein gene
where an AP-1 site located about 900 nucleotides upstream of the TSS inhibits
expression [97]. An AP-1 site located close to the TSS is important for the
expression of Moloney murine leukemia virus [75]. Moreover, functional AP-
1 sites have also been found inside exon 1 (downstream of the TSS) of the
proopiomelanocortin gene [11] as well as within the first intron of the fra-1
gene [6], both locations outside the promoter. Similar examples can be found
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for several other TF sites, illustrating why no general correlation of TF sites
within specific promoter regions can be defined. TFBSs can be found virtually
everywhere in promoters, but in individual promoters possible locations are
much more restricted. A closer look reveals that the function of an AP-1-
binding site often depends on the relative location and, especially, on the
sequence context of the binding site. The AP-1 site in the above-mentioned
rat bone sialoprotein gene overlaps with a set of glucocorticoid-responsive
element (GRE, the DNA sequence that is bound by the glucocorticoid receptor
which is a TF) half-sites (nuclear factor-binding sites are often composed of
two almost identical half-sites separated by a spacer of a few nucleotides),
which are crucial for the suppressive function.

The context of a TF site is one of the major determinants of its role in
transcription control. As a consequence of context requirements, often TF
sites are grouped together and such functional groups have been described
in many cases. A systematic attempt at collecting synergistic or antagonistic
pairs of TFBSs has been made with the COMPEL database [51]. In many
cases, a specific promoter function (e.g. a tissue-specific silencer) will require
more than two sites. Promoter subunits consisting of groups of TFBSs that
carry a specific function independent of the promoter will be referred to
as promoter modules. Arnone and Davidson originally gave a more detailed
definition of promoter modules [1]. In summary, promoter modules contain
several TFBSs which act together to convey a common function like tissue-
specific expression. The organization of binding sites (and probably also of
other elements) of a promoter module appears to be much more restricted
than the apparent variety of TF sites and their distribution in the whole
promoter suggests. Within a promoter module both sequential order and
distance can be crucial for function, indicating that these modules may be
the critical determinants of a promoter rather than individual binding sites.
Promoter modules are always constituted by more than one binding site.
Since promoters can contain several modules that may use overlapping sets
of binding sites, the conserved context of a particular binding site cannot be
determined from the primary sequence. The corresponding modules must be
detectable separately before the functional modular structure of a promoter
or any other regulatory DNA region can be revealed by computer analysis.
One well-known general promoter module is the core promoter, which will
be discussed in more detail below. However, the basic principles of modular
organization are also true for most, if not all, other regulatory regions and are
neither peculiar nor restricted to promoters.

1.6.3 Module Properties of the Core Promoter

The core promoter module can be defined functionally by its capability to
assemble the transcription initiation complex and orient it specifically towards
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the TSS of the promoter [100], defining the exact location of the TSS. Vari-
ous combinations of about four distinguishable core promoter elements that
constitute a general core promoter can achieve this. This module includes
the TATA box, the initiator region (INR), an upstream activating element and
a downstream element (Figure 1). The TATA box is a basic transcription
element, which is located about 20-30 nucleotides upstream of the actual
TSS and is known to bind to the TATA box-binding protein (TBP). However,
this is also where the straightforward definition of a core promoter module
ends because not all four elements are required or some elements can be too
variable to be recognizable by current computer tools.

The first group is made up of TATA box-containing promoters without a
known initiator. Successful positioning of the initiation complex can start at
the TATA box-containing promoters by the TFIID complex, which contains the
TBP as well as several other factors. Together with another complex of general
TFs, termed TFIIB, this leads to the assembly of an initiation complex [22].
If an appropriate upstream TFBS cooperates with the TATA box, no special
initiator or downstream sequences might be required, which allows for the
assembly of a functional core promoter module from just two of the four
elements. This represents one type of a distinct core promoter that contains
a TATA box, common among cellular genes in general.

The second group is TATA-less promoters with a functional initiator. As
is known from a host of TATA-less promoters, however, the TATA box is
by no means an essential element of a functional core promoter. An INR
combined with a single upstream element has also been shown to be capable
of specifically initiating transcription [41], although initiators cannot be clearly
defined at the sequence level so far. Generally, a region of 10-20 nucleotides
around the TSS is thought to represent the initiator. A remarkable array of
four different upstream TF sites (SP1, AP-1, ATF or TEF1) was shown to
confer inducibility by T-antigen to this very simple promoter, i.e. mediated
transcriptional activation upon binding of T-antigen. T-antigen is a potent
activating protein from a (simian) virus called SV40. This is an example of
a TATA-less distinct promoter that can be found in several genes from the
hematopoietic lineage (generating blood cells).

The third group is made up of a composite promoter consisting of both
a TATA box and an initiator. This combination can be found in several
viral promoters and it has been shown that an additional upstream TFBS
can influence whether the TATA box or the initiator element will determine
the promoter properties [21]. The authors showed that upstream elements
can significantly increase the efficiency of the INR in this combination; in
particular, SP-1 sites made the TATA box almost obsolete in their example.
The combination of TATA box with an INR had the general effect of inducing
resistance against the detrimental effects of a TFIIB mutant, which interfered
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Figure 1 General structure of a Pol Il core promoter and four different
setups (a—d) of a Pol Il core promoter. Simultaneous presence of

all four elements is not always essential. The shapes above the bar
symbolize additional protein-binding sites and the arrow indicates the
TSS.

with expression from TATA-only promoters. This is also an example for of
more indirect effects of specific arrangements in promoters that may not be
apparent unless special conditions occur.
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The last group consists of so-called null-promoters, which have neither a
TATA box nor an initiator, and rely exclusively on upstream and downstream
elements [66].

Basically, at least the four different core promoter types detailed above
have been identified so far, all of which represent valid combinations of core
promoter sites (reviewed in Ref. [66]). If the combinations involving upstream
and downstream elements are also considered, seven core promoter modules
are possible (most of which can be actually found in genes and consist of the
four variants in Figure 1(a-d) adding upstream or downstream elements or
both).

The only apparent common denominator of transcription initiation within
a promoter would be that there must be at least one core promoter element
anywhere within a certain region. This assumption is wrong. Both the spacing
and/or sequential order of elements within the core promoter module are
of utmost importance regardless of the presence or absence of individual
elements (as a rule; however, there appear to be some exceptions). Moreover,
many distinct promoters have requirements for specific upstream or down-
stream elements and will only function with their specific TF. Moving around
the initiator, the TATA box and, to some extent, also upstream elements can
have profound effects on promoter functions. For example, insertion of just a
few nucleotides between the TATA box and an upstream TFBS (TF MyoD) in
the desmin gene promoter cuts the expression levels by more than half [62].
Moreover, the promoter structure can affect later stages of gene expression
like splicing [23]. It was also shown for the rat $-actin promoter that a few
mutations around the TSS (i.e. within the initiator) could render that gene
subject to translational control [7].

As a final note, the mere concept of one general TATA box and one general
INR is an oversimplification. There are several clearly distinguishable TATA
boxes in different promoter classes [35] and the same is true for the INR
region, which also has several functionally distinct implementations as the
glucocorticoid-responsive INR in the murine thymidine kinase gene [73], the
C/EBP-binding INR in the hepatic growth factor gene promoter [48] or the
YY-1-binding INR [90].

Most of the principles of variability and restrictions detailed above for
the core promoter modules are also true for other promoter modules that
modify transcriptional efficiency rather that determining the start point of
transcription as the core promoter does. The bottom line is that the vast
majority of alternative combinatorial arrangements of the elements that can
be derived from a particular promoter might not contribute to the function of
the promoter. Module-induced restrictions are not necessarily obvious from
the primary sequences. Figure 2 shows a schematic Pol II promoter with the
initiation complex assembled that illustrates that it matters where a specific
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Figure 2 Transcription initiation complex bound to a schematic
promoter.

protein is bound to the DNA in order to allow for proper assembly of the
molecular jigsaw puzzle of the initiation complex. This is not immediately
obvious from inspection of promoter sequences because there exist several
(but a strictly limited set of) alternative solutions to the assembly problem. As
complicated as Figure 2 may appear, it still ignores all aspects of chromatin
rearrangements and nucleosomal positions, which also play an important role
in transcription regulation. Stein and coworkers, initially in 1995 and in a
2001 follow-up paper, have detailed an example of the profound influence
of these effects on promoter—protein complex assembly and function for the
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osteocalcin promoter [63,84]. However, chromatin-related effects are not yet
considered in any of the promoter prediction methods. Therefore, we do not
go into any more details here.

1.7 Bioinformatics Models for the Analysis and Detection
of Regulatory Regions

Algorithms used to analyze and detect regulatory regions are necessarily
based on some kind of usually simplified model of what a regulatory re-
gion should look like. All of these models inevitably compromise between
accuracy with respect to the biological model (the standard of truth) and
computational feasibility of the model. For example, a computational model
based on a priori 3-D structure prediction derived from molecular dynamics
using sophisticated force fields may be the most accurate model for a region,
but cannot be used for the analysis of real data due to excessive demand
on computational resources. On the other hand, a model based on simple
sequence similarities detected by IUPAC consensus (see also Section 2.1) se-
quences can be easily used on a PC, but results will usually not match the
biological truth in an acceptable manner.

1.8 Statistical Models

It was noted several years ago that promoters and most likely also other
regulatory regions like enhancers contain more TFBSs that nonregulatory se-
quences. Therefore, an analysis of the relative frequencies of such sites within
a sliding window can yield some information on the potential regulatory
character of a stretch of DNA, which is the prototype of simple statistical mod-
els. Several programs exist that rely to some extent on this type of statistics.
Another set of statistical models calculates local GC content bias and uses
this feature to discriminate potential promoters from other sequences. Such
nucleotide bias statistics are only used in combination with other features (see
Section 1.8.1) as they do not exhibit sufficient discriminatory power on their
own.

A new breed of statistical models has been successfully introduced into
promoter analysis more recently. These models focus on statistical analysis
based on identification of promoter-associated words (not predefined such as
TFBSs) using methods coming from other fields such as speech recognition.
These methods are currently the best performers in promoter finding.

1.8.1 Mixed Models

It is clear from Section 1.6 that a binding site description-based pure statistical
model is an oversimplification that will adversely affect the accuracy of pre-
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diction despite its attractive ease of implementation. Therefore, mixed models
are also used that take at least some regional information into consideration
and can be seen as statistical models split into compartments. Within the
compartments solely statistical features are considered, but promoter organi-
zation is somewhat reflected by the arrangement of the compartments, which
represent different promoter regions.

1.8.2 Organizational Models

The last category consists of models that try to closely follow the organi-
zational principles of real regulatory regions. In order to accomplish this,
individual promoter elements like TFBSs as well as their relative order and
distances are encoded in a formal model, which reflects the setup of a single
promoter or a small group of functionally similar promoters. Although they
match the biological situation best, their widespread application requires an
enormous amount of automation and background logistics such as high-
quality promoter databases, automatic methods to derive the computational
models as well as means of evaluating the resulting models. In the meantime,
most of the basic requirements have been met, but real-life application is just
picking up as this book is written.

However, such approaches are well suited for elucidating the molecular
basis of coregulation of genes in a particular coexpressed cluster of genes from
microarray experiments. So far this has been shown mainly for a simple eu-
karyote, Saccharomyces cerevisiae (yeast) [69]. Considerable progress has been
made already in applying combinatorial TFBS models to higher eukaryotes
such as mammalian systems, mostly based on experimental evidence [14,40].

2 Methods for Element Detection
2.1 Detection of TFBSs

TFBSs are the most important elements within regulatory DNA regions like
promoters or enhancers. The majority of the known TFs recognize short DNA
stretches of about 10-15 nucleotides in length that show different degrees
of internal variation. Successful detection of protein-binding sites in DNA
sequences always relies on precompiled descriptions of individual binding
sites. Such descriptions are usually derived from a training set of four or
more authentic binding sites. However, the criteria applied for the decision
whether a site is authentic or not vary considerably among authors of different
publications. One of the first approaches to define protein-binding sites used
IUPAC consensus sequences, which indicate the predominant nucleotide or
nucleotide combination at each position in a set of example sequences (e.g.
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SIGNAL SCAN [70]). The IUPAC string TGASTCA indicates that the first three
positions are most frequently T, G and A, while the fourth position may be
C or G, followed by T, C and A in most cases. IUPAC consensus sequences
became very popular as they are extremely easy to define from even a small
set of sequences, and their definition does not require more than a pencil and
a sheet of paper.

However, IUPAC consensus sequences strongly depend on the sequence
set used for definition because IUPAC consensus findings are based on ma-
jority rules. Adding or removing a single sequence can change the assigned
nucleotide at a position while it would have little effect in a corresponding
weight matrix. Cavener defined some rules that we have used for several
years now and, in our experience, [IUPAC consensus sequences defined that
way can be useful [16]. However, IUPAC consensus sequences may reject
biologically functional binding sites due to a single mismatch (or an ill-defined
IUPAC sequence).

The concept of nucleotide weight matrix (NWM) descriptions was devel-
oped in the 1980s as an alternative to IUPAC strings (e.g. Refs. [83, 86]).
Basically, weight matrices use an alignment of sequences to first generate
a nucleotide distribution matrix representing the complete nucleotide dis-
tribution at each position of the alignment. Then some sort of weighting
algorithm is used to adjust the matrix to the biological situation (also detailed
in Section 5.3.1). However, although weight matrices proved to be generally
superior to IUPAC strings, their greatest disadvantage is the absolute require-
ment for predefined matrices, which are more complicated to construct than
IUPAC strings and require specific software. This delayed widespread use of
weight matrices for almost a decade, although the methods were principally
available. They remained mostly unused because only a few special matrices
had been defined (e.g. Ref. [12]). The situation changed when in 1995 two
(overlapping) matrix libraries for TF sites were compiled and became widely
available almost simultaneously [17,72]. MATRIX SEARCH [17] transformed
the TRANSFAC database as completely as possible (starting at two binding
sites for one factor) into matrices using a log-odds scoring approach. The
Matlnspector library [72] was originally largely based on a stringent selection
from the matrix table of the TRANSFAC database, including the matrices
derived from the ConsInspector library [32,33] and several genuine matrices.
The Information Matrix Database was compiled from the TRANSFAC matrix
table and the TFD. In the meantime, the MatInspector library became inde-
pendent from TRANSFAC and is updated regularly by Genomatix Software
(Munich; currently more than 600 matrices), whereas IMD (another weight
matrix database) has not been updated recently.
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2.2 Detection of Novel TFBS Motifs

All the above covers the various approaches used to describe and find known
TFBS motifs, i.e. there is always evidence that a known TF binds to such
regions. There is another group of methods that join knowledge about evo-
lutionary relationship of promoters with pattern-finding algorithms to detect
phylogenetically conserved TFBSs. Examples of publications in this field
include comparison of conserved human mouse patterns with [64] or without
[61] direct sequence alignment, as well as approaches no longer restricted to
two sequences such as FootPrinter [8] or PhyME, which includes overrepre-
sentation into the probabilistic score of its findings [80].

A completely different set of methods deals with the detection of potential
TFBS patterns solely based on their occurrence in a set of sequences without
any biological knowledge about the particular TF binding to such regions. I
separate such methods from the TFBS recognition methods as an unknown
proportion of significant motifs detected this way may in fact not be TFBSs
at all, but may be conserved for other reasons. Nevertheless, these methods
do contribute to the generation of hypotheses about hitherto unknown TFBS
patterns. Available matrix detection programs were reviewed some time
ago [34] and a comparison of these methods by application to a test set of
sequences has been published [36] (see Ref. [85] for a more recent review of the
topic). A very recent study focused on matrix generation programs with no
real emphasis on search programs [88]. For convenience, Table 1 summarizes
some methods for the detection of TFBSs that are available in the internet with
emphasis on programs featuring a WWW interface.

Various newer approaches have been published in the meantime, ranging
from excellent purely mathematically motivated pattern detection (e.g. from
Pevzner’s group [50] or using self-organizing maps [65]) to strong connection

Table 1 Internet-accessible methods to detect promoter elements (TFBSs)

Program Availability Comments

MatInspector http:/ /www.genomatix.de Genomatix matrices; free of
charge use for academics
(limited) after registration

SIGNAL SCAN http:/ /bimas.dcrt.nih.gov/molbio/ signal =~ IUPAC consensus library

MATRIX http:/ /bimas.dcrt.nih.gov/molbio/ IMD matrix library

SEARCH matrixs (TRANSFAC + TED)

TFSearch http:/ /www.cbrc.jp/research/ TRANSFAC matrices
db/TFSEARCH

TESS http:/ /www.cbil.upenn.edu/tess/ TRANSFAC matrices

MATCH http:/ /www.gene-regulation.com/cgi- TRANSFAC matrices; free
bin/ pub/programs/match/bin/match of charge use for academics

(restricted public version)
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between biological [71] and experimental data with pattern detection [13].
This list only represents an arbitrary collection of very few papers in the field
and the selection was purely driven by the desire to cite at least one method
for each basic approach. I will not discuss de novo detection methods in any
more detail here, as the major scope of this chapter is not de novo detection
of patterns, but regulatory sequences analysis, which is usually based on
precompiled pattern collections.

2.3 Detection of Structural Elements

Regulatory sequences are associated with a couple of other individual ele-
ments or sequence properties in addition to the factor-binding sites. Among
these are secondary structure elements like the HIV-1 TAR region (trans-
activating region, which constitutes an RNA enhancer, e.g. Ref. [10]), cruci-
form DNA structures (symmetric double hairpins of both strands in DNA,
e.g. Ref. [92]) or simple direct repeats (e.g. Ref. [5]). Three-dimensional struc-
tures like curved DNA [54] also influence promoter function. Most of these
elements can be detected by computer-assisted sequence analysis [20, 43], but
none of them is really promoter specific and all such elements can be found
frequently outside of promoters. The promoter or enhancer function arises
from the combination of several elements that need to cooperate to exert tran-
scription control which none of them can achieve alone. This also illustrates
the main problem of promoter recognition. It is necessary to compile several
individually weak signals into a composite signal, which then indicates a
potential promoter without being overwhelmed by the combinatorial com-
plexity of potential element combinations.

2.4 Assessment of Other Elements

Several methods employ statistical measures of sequence composition to in-
clude features of regulatory sequences, which cannot be described by the three
types discussed above. These includes frequencies of oligonucleotides (dinu-
cleotides, trinucleotides and hexamers are used most frequently), CpG islands
(CG dinucleotides are usually underrepresented in mammalian genomes ex-
cept in part of coding and regulatory sequences; CpG islands are regions
where the dinucleotide is NOT underrepresented [38]) and periodicity of
weak sequence patterns (AR, TT, etc.). Definitions of such elements are usually
too weak to make any significant contribution to current prediction programs.
However, this situation might well change due to the unprecedented amounts
of continuous genomic sequences that become available in the course of the
current genome-sequencing projects.
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3 Analysis of Regulatory Regions

Basically, two different tasks can be distinguished in the analysis of regulatory
regions. The first task is analysis aimed at the definition of common features
based on sets of known regulatory sequences. This is a prerequisite for the
definition of descriptions suitable for large-scale application for prediction of
potential regulatory regions within new anonymous sequences, which can be
seen as the second task.

3.1 Comparative Sequence Analysis

Comparative sequence analysis is one of the most powerful methods to de-
duce regulatory features and organization. Two main types of comparative
analysis can be distinguished. The first approach compares regulatory re-
gions, e.g. promoters within one species such as promoters coexpressed un-
der particular conditions, or simply all (known) promoters within a genome
to deduce general features. The second approach compares only ortholo-
gous regulatory sequences (again promoters are the most prominent repre-
sentatives) in order to elucidate which features and elements have remained
conserved in evolution. Such features should be closely associated with
conserved functions of the corresponding regulatory regions. While compar-
ative analysis within species affords no distinction between pure statistical
findings and functional conservation, phylogenetic analysis of orthologous
regulatory sequences should indicate predominantly functionally conserved
features. However, intragenomic comparison may differentiate between indi-
vidual functions, whereas phylogenetic analysis will always yield a summary
over all conserved functions. Thus, very often a combination of both ap-
proaches is the best way to go [25].

3.2 Training Set Selection

One of the most important steps in comparative sequence analysis is the
selection of suitable training sets of sequences. If a training set of promoters
consists only of constitutively expressed sequences (constant level of expres-
sion, no or little regulation), little can be learned about any kind of tissue-
specific expression regardless of the methods applied. Inclusion of too many
wrong sequences (e.g. that are not promoters at all or promoters not involved
in the regulation under investigation, see alternative promoters below) may
also prevent any meaningful analysis. Although this observation appears
trivial at first, it becomes a real issue when data are scarce and less well-
characterized sequences have to be used.
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Control sets known not to be functionally similar to the training sets are
about as important as the training sets. However, true negative regions are
even scarcer than known regulatory regions. Negative often means just “no
positive functions found”, which can also be due to failures or simply means
that the sequences have not been tested at all. Therefore, statistical negative
control sequences are often required. Random sequences can be generated
easily, but often are of limited use, as they do not represent several important
features of natural DNA correctly. This includes underrepresented features
(e.g. CpG islands), asymmetric features (e.g. strand specificity), local changes
in GC content or repetitive DNA elements. Selection of appropriate control
sequences can be a major effort, but is also crucial for the validity of the
evaluation of any method. Common problems with controls are either known
or unknown biases in the control set or circularity problems, i.e. the training
and the test sets of sequences are related or overlap. The availability of large
continuous stretches of genomic DNA from the genome-sequencing projects
constantly improves this situation. Genomic sequences should always be the
first choice for controls as they reflect the natural situation.

3.3 Statistical and Biological Significance

The quality of sequence pattern recognition is often optimized to improve the
correlation of the methods with the data (positive and negative training sets).
However, in most cases it is not possible to collect sufficient data to perform a
rigorous correlation analysis. Therefore, bioinformatics methods often rely on
statistical analysis of their training sequences and optimize for the statistically
most significant features. Unfortunately, this kind of optimization does not
always reflect the evolutionary optimization of regulatory sequences that is
always optimizing several features at once. This problem is different from
overfitting of data as it is more about optimization criteria than parameter
fitting per se.

The dynamics of biological function often necessitates suboptimal solutions.
For example, real sequences usually do not contain binding sites with the
highest affinity for their cognate protein because binding and dissociation of
the protein is required for proper function. The perfect binding site with the
highest binding affinity would interfere with the dissociation and is therefore
strongly selected against.

3.4 Context Dependency
The biological significance of any sequence element is defined by the regula-

tory function it can elicit. This is usually dependent on a functional context
rather than being a property of individual elements. Therefore, statistical
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significance of the features or scores of individual elements is neither nec-
essary nor sufficient to indicate biological significance. Recognition of the
functional context in an essentially linear molecule like DNA can be achieved
by correlation analysis of individual elements, which became an important
part of all semi-statistical or specific modeling approaches discussed below.
The context is also an important parameter in statistical analysis. For example,
an element frequently found all over the genome could become even statisti-
cally significant if only the immediate vicinity of a binding partner’s binding
sites is analyzed such as in case of transcriptional modules. Therefore, lack of
statistical significance may just indicate that the wrong context was chosen for
the analysis.

4 Methods for Detection of Regulatory Regions

There are several methods available for the prediction of regulatory DNA
regions in new sequence data. Table 2 lists methods available with a special
focus on programs that provide a WWW interface. Unfortunately, there is no
“one-does-it-all” method, and all methods have their individual strong and
weak points. There was a fairly recent review on the subject including most
relevant programs, with one exception [4]. The program PromoterInspector

Table 2 Internet-accessible promoter/promoter region prediction tools

Program Availability Comments

Promoter prediction
Ab initio promoter
finding (large-scale

sequences)

PromoterInspector http://genomatix.de free of charge use for
academics (limited) af-
ter registration

Dragon http:/ /research.i2r.a-star.edu.sg/ free for academics

PromoterFinder promoter/promoterl_5/DPF

Promoter finding in

preselected  sequence

ranges

Eponine http:/ /servlet.sanger.ac.uk:8080/ eponine free for academics

FirstEF http:/ /rulai.cshl.org/tools/FirstEF free for academics

Promoter

module/region

recognition

Modellnspector http:/ /www.genomatix.de free of charge use for
academics (limited) af-
ter registration; mod-
ules of two TF sites
(MatInspector library)
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[77] was not included as it predicts promoter regions and neither strand
orientation nor the TSS.

A program doing an excellent job in one case might be a complete failure
in another case in which other methods are successful. Therefore, we will
describe a number of methods without intending any rank by order of dis-
cussion. We will rather follow the functional hierarchy that appears to apply
to the different regulatory regions. However, the apparent best application
range will be indicated.

4.1 Scaffold/Matrix Attachment Regions (S/MARS)

A chromatin loop is the region of chromosomal DNA located between two
contact points of the DNA with the nuclear matrix marked by so-called
S/MARs. The nuclear matrix is a mesh of proteins filling the interdomain
space inside the nucleus where S/MARs form highly flexible structures that
are necessary, but not sufficient, for anchoring at chromosomal DNA to the
matrix [42].

Transcriptional regulation requires the association of DNA with this nuclear
matrix, which retains a variety of regulatory proteins. S/MARs are composed
of several elements, including TFBSs, AT-rich stretches, potential cruciform
DNA and DNA-unwinding regions, to name a few of the most important
S/MAR elements. There is an excellent recent review on chromatin domains
and S/MAR functions [9]. Singh and coworkers published a method to detect
potential S/MAR elements in sequences and made the method available via
WWW (http:/ /www.ncgr.org/MAR-search/) [79]. Their method is based on
a statistical compilation of the occurrence of a variety of S/MAR features
(called rules). Accumulation of sufficient matches to these rules will be pre-
dicted as potential S/MAR regions. The specificity of the method depends
critically on the sequence context of the potential S/MAR sequences. An-
other approach utilizes a single S/MAR associated sequence element to locate
potential S/MARs [91]. Therefore, results are difficult to evaluate by com-
parisons. We developed another approach to define especially AT-rich MARs
called SMARTest, which is available on the web at http:/ /www.genomatix.de.
SMARTest is based on a library of MAR-associated nucleotide weight ma-
trices and determines S/MARs independent of any larger sequence context
[37]. Therefore, the method is suitable for testing isolated S/MAR fragments.
MARFinder and SMARTest are complementary, and should be seen in combi-
nation rather than as alternatives.
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4.2 Enhancers/Silencers

Enhancers are regulatory regions that can significantly boost the level of
transcription from a responsive promoter regardless of their orientation and
distance with respect to the promoter as long as they are located within the
same chromatin loop. Silencers are basically identical to enhancers and follow
the same requirements, but exert a negative effect on promoter activities. Both
regulatory regions are also relevant in disease processes, as detailed in a recent
review [55]. At present there are no specific programs to detect enhancers and
silencers. However, programs designed to detect the internal organization of
promoters are probably also suitable to detect at least some enhancers and
silencers since these regions often also show a similar internal organization as
promoters.

4.3 Promoters

Promoters were described in detail above — they are just mentioned here again
to place them into context.

4.4 Programs for Recognition of Regulatory Sequences

There are several ways promoter recognition tools can be categorized. We will
focus on the main principles and intended usage of the programs rather than
technical details. Two generally distinct approaches have been used so far in
order to achieve in silico promoter recognition. The majority of programs focus
on general promoter recognition, which represents the first category.

The second category of tools aims at specific promoter recognition relying on
more detailed features of promoter subsets like combinations of individual
elements. The beauty of this approach is its excellent specificity, which is ex-
tremely helpful if only promoters of a certain class are of interest or megabases
of sequences have to be analyzed. The bad news here is limited applicability,
i.e. each promoter group or class requires a specifically predefined model
before sequences can be analyzed for these promoters. This may result in a
huge number of false negatives in large-scale analysis.

We will briefly discuss individual methods in these two categories with
emphasis on the implementation of the biological principles of promoter
features. Recently, a practical comparison of the majority of available tools
based on general promoter models has been carried out [4], which was the
first large-scale update since the original comparison carried out by Fickett
and Hatzigeorgiou in 1997 [29]. There was another review in between those
two studies by Ohler and Niemann [67]. Therefore, we will not go into details
on the performance of the methods.
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4.4.1 Programs Based on Statistical Models (General Promoter Prediction)

These programs aim at the detection of Pol II promoters by a precompiled
general promoter model that is part of the method. Learning methods range
from supervised artificial neuronal networks over statistical analyses to sim-
ple counting of features to a threshold. One group of programs in this category
(see below) concentrates on recognition of core promoter properties and infers
promoter location solely on that basis, whereas the other group consists of
programs that take into account also the proximal promoter region of about
250-300 nucleotides upstream of the TSS. General recognition models were
usually based on training sets derived from the Eukaryotic Promoter Database
(EPD) and various sets of sequences without known promoter activities. The
EPD originally was an excellent collection of DNA sequences that fulfill two
conditions: they have been shown experimentally to function as promoters
and the TSS is known. Recently, EPD also started to incorporate promoters
not fulfilling these stringent conditions [78].

The beauty of the above approaches is their generality, which does not
require any specific knowledge about a particular promoter in order to make
a prediction. This appears ideal for the analysis of anonymous sequences for
which no a priori knowledge is available. The bad news was that the specificity
of all such general approaches implemented was very limited for quite some
time. However, the development of PromoterInspector [77] heralded a new
era of promoter prediction, combining acceptable sensitivity with high speci-
ficity. Other programs that followed performed comparably [3]. These general
promoter prediction approaches were the first to provide acceptable a priori
promoter prediction on a whole chromosome and now genome scale [76].
Specificities were originally reported just below 50%, but in the meantime
many of the orphan predictions (in the middle of unannotated sequence) have
found their genes and transcripts boosting specificity to between 80 and 90%.
Only a really complete annotation of the genomes will tell the true specificity
of those methods. Nevertheless, it is clear that the goal of highly specific
promoter prediction in whole mammalian genomes has been achieved.

Some general promoter model-based programs employ methods already
described for identification of individual promoter elements (usually TBFBS
IUPAC or weight matrix descriptions), but try to derive more general fea-
tures from a collection of such elements rather than emphasizing individual
elements. These methods may be called statistical element analyses and treat
the proximal promoter as a purely statistical problem of TFBS accumulations,
sometimes fine-tuned by some sort of weighting based on occurrence frequen-
cies of TFBSs in promoters as compared to a negative sequence set. Despite the
complicated modular structure of promoters outlined above there is a solid
rational basis for this general model. All promoters must have a functional
core promoter module often containing a TATA box, which is the prime target
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of the majority of the general promoter prediction tools. This is also one of
the reasons that some programs confine their analysis to the core promoter
region, which avoids problems with the much more diverse proximal regions.
Biological knowledge is solely used to select the training sets and a variety of
methods is used to learn the distinctive patterns.

Without exception, TFBS-based statistical element analysis suffers from a
huge number of false-positive predictions (typically about one prediction in
10 000-30 000 nucleotides).

4.4.2 Programs Utilizing Mixed Models

These programs also rely on statistical promoter models, but include directly
or indirectly some organizational features of promoters, placing them in be-
tween the pure statistical models and attempts to approximate the biologically
important structured organization of promoters. Again, the first-generation
methods will only be summarized. FunSiteP [53] as well as the approach taken
by Audic and Claverie [2] fall into this category.

4.4.3 Programs Based on Specific Promoter Recognition

The second, more recent and far more successful concept should be called
functional element analysis, as it relies heavily on biological knowledge about
the relative importance of individual elements and derives discriminative
features on that basis. These methods carry out a sophisticated compositional
analysis of the proximal promoter analysis to detect unique features within
that region that can be used to distinguish promoters from nonpromoters
without understanding the details, but using any pre-existing knowledge for
feature selection.

This category of methods introduces the functional context in the form of
heuristic rules or tries to learn the context from comparative sequence anal-
ysis. These methods emphasize specific modeling of promoters or promoter
substructures rather than general recognition. Therefore, it is not possible to
directly assess the promoter prediction capabilities of these methods. How-
ever, in many cases recognizing a common substructure between promoters
can be very helpful, especially for experimental design. Although these pro-
grams were also published during the time the first-generation general pro-
moter prediction programs appeared, they are still useful in whole-genome
scans due to their very high specificity, warranting a more detailed discussion
here.

The method FastM was derived from the program ModelGenerator [31]
and takes advantage of the existence of NWM libraries. It can be accessed
via a WWW interface (http://genomatix.gsf.de part of GEMS launcher) and
allows for a straightforward definition of any modules of two TFBSs by simple
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selection from the MatInspector Library [72]. This now enables definition
and detection of wide variety of synergistic TFBS pairs. These pairs are often
functional promoter modules conferring a specific transcriptional function to
a promoter as shown in Refs. [52,56]. FastM models of two binding sites can
successfully identify promoters sharing such composite elements, but are not
promoter specific. Composite elements can also be located in enhancers or
similar structures. The latest version of FastM enables definition of complete,
highly specific promoter class models including up to 10 individual elements,
also including IUPAC strings, repeats and hairpin structures.

The program FrameWorker [15] automates several of the steps taken man-
ually in FastM in order to ground specific promoter modeling on as much
an algorithmic basis as possible. FastM requires crucial parameters such as
strand orientation, distance ranges, order of elements, as well as the indi-
vidual nature of the elements (e.g. which weight matrix to use) to be de-
termined by the user. FrameWorker, in contrast, automatically determines
theses parameters from a comparison of an (still manually selected) set of
input sequences within user-defined ranges. However, determination of the
individual weight matrices to be used, as well as their number, distances and
relative order, does not require previous knowledge.

Another approach aimed at modeling promoter substructures consisting
of two distinct elements is TargetFinder [58]. This method combines TFBSs
with features extracted from the annotation of a database sequence to afford
selective identification of sequences containing both features within a defined
length. The advantage is that TargetFinder basically also follows the module-
based philosophy, but allows inclusion of features that have been annotated
by experimental work for which no search algorithm exists. Naturally, this
excludes analysis of new anonymous sequences. The program is accessible
via a WWW interface (http://gcg.tigem.it/ TargetFinder.html).

It should be mentioned here that Fickett also employed the idea of a two-
TFBS module to successfully detect a subclass of muscle-specific regulatory
sequences governed by a combination of MEF2 and MyoD [28]. However, this
was also a very specific approach and no general tool resulted from that work.
The MEF2/MyoD model can be used to define a corresponding module with
FastM. Wasserman and Fickett also published a modeling approach based on
clustering of a preselected set of NWM (defined in the same study) correlated
with muscle-specific gene expression [93]. They were able to detect about 25%
of the muscle-specific regulatory regions in sequences outside their training
set and more than 60% in their training set. They classify their method
as regulatory module detection. However, their results suggest that they
probably detect a collection of different, more specific modules with respect to
the definition given above. Although the method is not promoter specific and
the specificity is moderate, it is a very interesting approach that has potential
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Figure 3 GFAP promoter model conserved in human mouse and rat
promoter. The boxes indicate the individual TFBSs found and the bar
indicates the genomic DNA.

for further development, as also became evident from follow-up publications
of the same authors [30,94].

Generally, this group of methods achieves much higher specificity than the
first-generation programs following general models. However, the price for
this increase in specificity is usually restriction of the promoter models to a
small subset (class) of promoters.

The model of the glial fibrillary acidic protein (GFAP) promoter shown in
Figure 3 was derived from a comparison of the human, mouse and rat GFAP
promoters. This model contains five different TFBSs and was derived from
the set of three sequences using GEMS Launcher (Genomatix). This model
recognizes a single sequence, the GFAP promoter, when searched against
more than 36 000 human promoter sequences and thus is absolutely gene
specific. Interestingly, if the search is carried out with relaxed stringency
(allowing for less-perfect matches) only a second sequence comes up, the
DGAT2 gene, which is the diacylglycerol O-acetyltransferase homolog 2 (ho-
molog to mouse). From the literature it becomes immediately evident that
both genes are brain-expressed (GFAP is brain/astrocyte specific) and both
are genes associated with insulin signaling. Thus the promoter model-based
search found biologically linked genes.

4.4.4 Early Attempts at Promoter Prediction

There are various programs that might be called first-generation programs for
promoter prediction, some of which were absolutely instrumental in paving
the way towards the newer developments, but are no longer of practical use.
For that reason they will only be summarized here and not discussed in detail.
The first exception to this rule will be Promoter Scan, as this was really the first
program ever published for promoter prediction in mammalian sequences
and served as a role model for a number of other developments.

Several of the general promoter prediction programs followed the basic
design of Prestridge who used the EPD by Bucher’s group [78] to train his
software for promoter recognition. His program Promoter Scan was the first
published method to tackle this problem [70]. He utilized primate nonpro-
moter sequences from GenBank as a negative training set and included the
proximal promoter region in the prediction. The program uses individual
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profiles for the TFBSs indicative of their relative frequency in promoters to
accumulate scores for DNA sequences analyzed. Promoter Scan employs
the SIGNAL SCAN IUPAC library of TFBSs [70], introducing a good deal
of biological knowledge into the method, although modular organization
of the proximal region is necessarily ignored. Results of the first version
were combined with the Bucher NWM for the TATA box, which served as
a representation of the core promoter module [12].

Other methods following a similar design will not be discussed in detail, but
should be mentioned. These include PromFD by Chen and coworkers [18],
and the programs TSSG/TSSW from Solovyev’s group, which are basically
gene prediction methods that include promoter prediction [82]. Other pro-
grams in that category are XLandscape [60] and PromFind [44]. Michael
Zhang published a new method to detect TATA-box containing core promot-
ers by discrimination analysis.

5 Annotation of Large Genomic Sequences

Many of the methods discussed above were developed before the databases
started to be filled with sequence contigs exceeding 100 000 nucleotides in
length. The complete human genome draft now contains more than 3 billion
nucleotides and many more genomic sequences of similar size are entering
the databases. This changes the paradigm for sequence annotation. While
complete annotation remains an important goal, specific annotation becomes
mandatory when even individual sequences exceed the capabilities of re-
searchers for manual inspection. Annotation of genomic sequences has to
be fully automatic in order to keep pace with the rate of generation of new
sequences. Simultaneously, annotations are embedded into a large natural
context rather than residing within relatively short isolated stretches of DNA.
This has several quite important consequences.

5.1 Balance between Sensitivity and Specificity

We will confine the discussion here to regulatory regions, but the problems are
general. A very sensitive approach will minimize the amount of false-negative
predictions and thus is oriented towards a complete annotation. However,
this inevitably requires accepting large numbers of false-positive hits, which
easily outnumber the true-positive predictions by an order of magnitude.

In order to avoid this problem methods can be designed to yield the utmost
specificity (e.g. specific promoter modeling as discussed above). Here, the
catch is inevitably a high number of false-negative results, which also may
obscure 70-90% of the true-positive regions. The newer developments of gen-
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eral, but still specific, promoter finding (especially Refs. [3,77]) may provide
a way out of the dilemma. Once a rough annotation has been achieved, other
methods can come in to locate promoters reliably in more restricted search
spaces such as the FirstExon Finder [24] and Eponym [26]. There was a recent
survey of promoter finding in genomic sequences emphasizing that suitability
of methods for analysis of large genomic sequences cannot be inferred from
limited tests with short samples, which could be referred to analysis in a
“sheltered environment” [4].

Gene (or gene group)-specific methods were shown to produce more that
50% true-positive matches in their total output (e.g. Ref. [35]), but recognize
just a small fraction of all promoters, which is inevitable for a function-
specific model. A single specific model like the phylogenetically conserved
GFAP promoter model (Figure 3) matched only once in the human genome,
indicating that it is absolutely specific for the GFAP gene.

Definition of the required number of specific models based on current tech-
nologies was not a feasible task until recently. However, new developments
have already been initiated to overcome the current obstacles and Genomatix
is actually working on a genome-wide library of evolutionarily conserved
organizational promoter models.

It is quite evident that functional promoter analysis in laboratories is capa-
ble of dealing specifically with several hundred or even thousand predicted
regions, whereas predicting several hundred thousand or even millions of
regions remains out of reach. However, recent improvements of laboratory
high-throughput technologies such as location of the TSS by the so-called
oligo-capping method [87] have provided an unprecedented amount of ver-
ified TSSs (which by definition are located within the promoters). Never-
theless, enhancements of the specificity of promoter recognition in silico will
also be required as the oligo-capping method has an inherent error rate of
20-30%. Both developments will meet sometime in the future to close the
gap in our knowledge about the location of promoters in the genome. More
elaborative approaches will be required both in the laboratory as well as in
bioinformatics in order to also understand the functionality hidden within
these regulatory sequences. Itis clear from the past and present developments
that bioinformatics will probably cover significantly more than half of that
path.

5.2 Genes — Transcripts — Promoters

Originally, the notion was that one gene would represent one function. We
learned in the early days of molecular biology during the 1980s that this
is not quite true and that one gene may very well have several functions.
However, it did not become clear how this is realized until the large-scale

183



184

6 Analyzing Regulatory Regions in Genomes

Figure 4 Genomic organization of genes, promoters and transcripts.
The transparent boxes indicate promoters, the grey boxes indicate
exons and the grey bars indicate the genomic sequence. The brackets
delineate the locus of the gene.

mapping and sequencing effort provided us with a better insight into genomic
organization. This knowledge has changed our perception of a gene. A
gene is no longer an entity, but rather a container with individual transcripts
representing the entities. Figure 4 illustrates this new notion schematically.
The area in brackets indicates the genomic locus of the gene. This region
can be larger than a million base pairs in some cases, providing the space
for the complex inner organization. The line with the brackets indicates the
genomic structure, such that both promoters and all exons are in a linear
arrangement with no clue about the functional links between the individual
elements. The lines below refer to individual transcripts, with two transcripts
exhibiting alternative splicing originating from promoter 1, while another
transcript originates from promoter 2. The important consequence is that this
gene may behave like two independent genes with respect to regulation, and
the transcript originating from promoter 2 can be completely independent in
terms of regulation and function from the other transcripts. They may even
encode quite different proteins.

From this it is immediately evident why the paradox of humans having only
a moderate amount of genes in excess to Drosophila or Caenorhabditis elegans is
not a real paradox. The inner complexity of transcript and regulatory combi-
nations more than compensates for the apparent lack in total gene numbers.
If we count transcripts rather than genes, mammalians do have close to or
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even above 100 000 — a number earlier pondered for genes as required for
the observed complexity. It just turns out that within regulatory sequences as
well as within the whole genome, complex hierarchical organization prevails
over simple numbers of elements. This is not surprising as the hierarchical
principle allows a much more economic utilization of genomic sequences.

5.3 Sources for Finding Alternative Transcripts and Promoters

Of course, once we realized that alternative transcripts as well as alternative
promoters are important in general, the question arises how to cope with this
extra level of complexity. There are several consequences that need to be taken
into account. First, many expressed sequence tags (ESTs) sequences so far
simply dismissed as “genomic contamination” may in fact indicate alternative
transcripts, as what is an exon in one transcript can be an intron in another.
The same is true for a predicted or experimentally verified promoter. If such
a promoter was located inside a well-known gene, it was readily dismissed as
a false positive, because we already “knew” that the promoter was further
upstream. We have seen many cases in which the “false” promoter has
found its own transcript in the meantime and was promoted from false to
alternative. However, this has blurred the line between “true” and “false”
considerably. What is apparently true for one condition (e.g. in one tissue)
may be “false” for another condition (e.g. in another tissue). This dilemma is
far from being finally solved, but as a practical approach we have adopted
a policy of “multiple-evidence” support. The idea is very simple — both
theoretical as well as laboratory-based approaches may yield false results.
However, if two or more independent methods suggest the same conclusion,
it is much more likely to be true than that both methods made exactly the
same mistake. For example, if oligo-capping indicates a TSS, which happens
to be located right inside a predicted promoter, we take this as evidence for
a real promoter. Both methods are totally independent of each other and the
chance of a result converging by chance is absolutely minimal. Based on this
concept, ElDorado (Genomatix) has accumulated more than 150 000 primary
transcripts as well as promoters for five mammalian species so far and we are
quite confident that we have not yet seen the end of the story.

5.4 Comparative Genomics of Promoters

We have alluded to the “multiple-evidence” approach already in the previous
section. However, there is very powerful line of evidence that has not yet
been mentioned — the evolutionary conservation of gene regulation. This is
one of the most direct lines of evidence towards the functional conservation
of promoters as functional regions or elements are far better conserved that
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the sequence in general. We took advantage of this fact and developed a
complete strategy affording the identification and subsequent mapping and
analysis of orthologous promoters (Genomatix, patent pending). On top of
identification of promoters of orthologous genes, this also includes finding the
individual promoters within each species that correspond to each other, which
we termed orthologous promoter sets. This is very important for subsequent
analysis as functional elements, because functional element conservation is
only detectable within orthologous promoter sets. Of course, this approach
becomes stronger and stronger as the number of available genomes rises. As
of 2004, this enabled us to detect or confirm more than 10 000 promoters in the
human genome, making comparative genomics of promoters a major source
of promoter annotation (as taken from the ElDorado statistics; Genomatix).

6 Genome-wide Analysis of Transcription Control

If the focus is broadened from individual genes or small gene groups towards
looking at the whole genome it is no longer sufficient to just take promoters
into consideration. On a genome-wide scale the hierarchy of gene regulation
comes into the picture in full force. First, expression of genes on the mRNA
level by transcription requires the locus of the gene to be accessible. Regu-
lation of gene expression at the DNA level effected not by TFs, but by other
factors elsewhere in the genome, is generally termed epigenetic regulation.
This includes regulation by alternation of the chromatin structure, where
DNA and histone modifications (e.g. DNA methylation or histone acetylation)
play a role and the S/MAR elements discussed above become important.
Whether the chromatin structure is open or closed determines whether a
promoter becomes available for transcription or not. Thus, a gene with the
perfect setup within its promoter(s) can be silent even if all the required TFs
are present, provided the chromatin is closed, thus blocking access of these
factors to the promoter. Let us assume that the chromatin is in an open,
i.e. accessible, state. Even this does no guarantee active transcription of the
embedded genes. Local DNA methylation can interfere, an active silencer
can specifically block individual genes or one crucial factor may be missing
or sequestered (e.g. the nuclear factor NFxB can be blocked by its inhibitor
IxB, rendering it nonfunctional the despite presence of the protein). Active
transcription is only observed when all conditions are right: the chromatin is
open, no repressor is active, and all crucial factors can actually access their re-
spective binding sites on the promoter and enhancer, if one is required. There
is also a very old mechanism that seems to gain importance in the regulation of
gene expression again — antisense transcription [98]. This means that the same
region is transcribed in both directions, resulting in complementary RNAs
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that can form dimers and thus cancel each other out, as RNA dimers are prone
to be destructed immediately. This very complex situation is a formidable
safeguard against spurious expression of genes, which could be disastrous for
a cell.

6.1 Context-specific Transcripts and Pathways

The many conditions that have to be met to enable the expression of a gene are
also behind the differential expression of individual transcripts often coupled
to particular pathways. Transcripts can be cell/tissue specific, pathway spe-
cific (or better associated as complete specificity is rare) or tied to a particular
developmental stage of an organism. This emphasizes the important fact
that biological function is tied to the transcript/protein, not to the gene,
which may well encode various functions in various transcripts. There is
also an important consequence for the analysis of regulatory networks behind
signaling or metabolic pathways. It is not sufficient to identify which genes are
involved in that pathway, but of utmost importance to identify the promoters
associated with that particular transcript/pathway. This is also the reason
that the very same pathway containing the same genes can still be differently
regulated in different tissues, if different transcripts/promoters are involved
in the different tissues. The upside of this complicated situation is that regu-
latory analysis based on the correct promoters is as close to the real biological
situation as we currently can get with in silico methods. As it does not make
any sense to simplify biology to fit our generic models it is well worth the
effort to identify the conditionally important transcripts and promoters as this
assures biological importance of the results.

6.2 Consequences for Microarray Analysis

Another field to which the bioinformatics of regulatory DNA regions can
be expected to contribute significantly is the analysis of results from high-
throughput experiments in expression analysis (e.g. all forms of expression
arrays). Due to the discontinuous nature of regulatory regions there is no way
of deducing common regulatory features from the expression data directly
which are usually based on coding regions. However, the general availability
of the corresponding genomic regulatory regions for many (and very soon
all) of the genes analyzed in an expression array experiment enables attempts
to elucidate the genomic structures underlying common expression patterns
of genes. Expression arrays (described in detail in Chapters 24-28) directly
deliver information, which genes are expressed where under the conditions
tested. However, they cannot provide any clue to why this happens or how
the same genes would behave under yet untested conditions. Identification of
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functional features by comparative sequence analysis (e.g. promoter modules)
can reveal different functional subgroups of promoters despite common regu-
lation under specific conditions. Consequently, the detection of known func-
tional modules can suggest expression patterns under yet untested conditions
[95]. Moreover, the organizational structures of promoters can also be used to
identify additional potential target genes either within the same organism in
other genomes or via comparative genomics. Given the exponential number
of possibilities for combinations of conditions, bioinformatics of regulatory
sequences will also become instrumental for the rational design of expression
arrays as well as for selection of experimental conditions.

While this basic conduct of analysis of microarray data remains unchanged,
our growing knowledge of alternative transcripts and alternative promoters
has far-reaching consequences on strategies employed to analyze transcript
levels on a large scale — the microarrays of DNA chips. The most obvious
consequences of course are for the analysis of microarray data based on
current chip designs that can be purchased from several vendors. As this is
the most clear-cut consequence, let us focus on this point first. If there is a
single transcript from a single promoter for a given gene, there is no problem,
as none of the above complications applies. However, according to current
knowledge probably more than 80% of all genes have alternative transcripts
and maybe more than half also alternative promoters [99]. Both numbers are
rough estimates from what we already know and can be expected to rise even
further. This illustrates nicely that the carefree situation of single transcripts
and promoters is most likely the exception, not the rule, for genes represented
on micorarrays. It has already been recognized that this may cause problems
with the traditional way of probe selection, rendering part of the probes on
a microarray uninformative [39]. The problem with alternative splicing has
been recognized already and studies in that direction have been carried out
[49]. There are also efforts under way by microarray manufacturers to take
alternative splicing into account. Fortunately, it became possible to check
which probes can be reliably used and which probes might cause problems
thanks to the high-quality genomic sequences available and our increasing
knowledge about alternative transcripts. It should be noted that the set of
useful probes depends to some extent on the experimental conditions, not the
array used. Some probes might be very informative, whereas the alternative
transcripts also recognized by the same probes are not expressed. Use of
such probes might cause problems under conditions in which such alternative
transcripts are coexpressed.

However, the case of alternative promoters is much less well recognized,
but is of equal importance as in many cases transcripts appear to be the
same, but originate from different promoters. For example, the CYP19A
(also known as aromatase) gene that has at least seven promoters (probably
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even 10), all of which appear to encode the same transcript. The reason for
that paradox is that all promoters are linked to alternative noncoding first
exons of almost identical length all of which splice invariably to the identical
coding region comprised of nine additional exons. Thus, basically all probes
recognize any of the transcripts indifferently. However, events important in
breast cancer include a switch of promoter usage not detectable that way [19].
Only transcript-specific probes will help here and they can only be designed
based on knowledge about the alternative promoters.

As already mentioned, it is possible to reduce the amount of potentially
ambiguous probes by utilizing the existing knowledge of alternative tran-
script structures [49]. Based on the huge promoter collection in ElDorado,
Genomatix is currently evaluating genome-wide probe sets that are specific
for alternative promoter usage in order to afford the design of microarrays
that will directly indicate promoter selection. This will be of great use for
subsequent promoter analyzes as it will take the guesswork out of the selec-
tion of promoters. This will also be the only way to tackle the problems of
closely related transcripts such as in the case of the CYP19A gene discussed
above. It is safe to assume that transcript- and promoter-specific microarrays
will become the standard in the near future, bringing the results obtained with
such arrays a lot closer to the underlying molecular mechanisms that present-
day arrays allow.

7 Conclusions

The experimental dissection of functional mechanisms of transcription control
has gained an enormous momentum over recent years. The ever-increasing
number of publications on this topic bears witness to this development, which
found one early hallmark manifestation in the introduction of a new section
in the Journal of Molecular and Cellular Biology entirely devoted to analysis of
transcription control, which just spearheaded widespread publication of sim-
ilar articles in most other leading journals. The complex interleaved networks
of transcription control certainly represent one of the cornerstones on which to
build our understanding of how life functions, in terms of embryonic develop-
ment, tissue differentiation, and maintenance of the shape and fitness of adult
organisms throughout life (see also Chapter 21). This is also the reason why
both the experimental analysis and the bioinformatics of transcription control
will move more and more into the focus of medical/pharmaceutical research.
A considerable number of diseases are directly or indirectly connected to
alterations in cellular transcription programs (e.g. most forms of cancer). We
recently demonstrated how promoter analysis can be used to elucidate some
underlying molecular networks in insulin signaling with relevance to the ma-
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turity onset of diabetes of the young (MODY [25]). Furthermore, many drugs
influence transcription control via signaling pathways (triggering TFs) [47],
which could also be connected to certain side-effects of drugs [73]. The various
genome-sequencing projects will provide us with a complete catalog of the
components of a number of mammalian species probably within a few years.
This will complement the blueprint of the material basis of a human already
derived from the human genome sequence. However, only the analysis of
the regulatory part of the genome and the corresponding expression patterns
and the complex metabolic networks will provide deeper insight into how
the complex machinery called life actually works. Definition and detection of
regulatory regions by bioinformatics will contribute to this part of the task,
and will become instrumental in guiding experimental approaches as well.

As a final note it should be emphasized that transcriptional regulation
necessarily involves thousands of proteins, which is why proteomics analyses
will also make important contributions to our understanding of regulatory
events (see Chapter 28). However, despite its much longer history, protein
research has not yet reached the level where it can be readily merged with
the DNA-based analysis of transcription control. Nevertheless, we are quite
confident that in the very near future protein research will be as integrated into
the analysis of genome regulation as are nucleotide sequence- based methods
today. Biology simply cannot be divided into DNA, RNA and protein “fields”
as all of this is required to define and support the wonderful concerted action
called life.
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Finding Repeats in Genome Sequences
Brian |. Haas and Steven L. Salzberg

1 Introduction

An essential component of genome sequence analysis is the identification of
repetitive sequences (repeats). A repeat is a substring that occurs multiple
times within a sequence or collection of sequences. Repeats are commonly
found in the genomes of both prokaryotes and eukaryotes, although generally
to a lesser extent in the compact genomes of prokaryotes. In some cases, the
number of repeats and their contribution to overall genome size and content is
staggering, e.g. ;ore than half of the human genome is composed of repetitive
sequences [34]. In addition, the large genomes of higher plants including
maize and wheat are composed mostly of repetitive sequences [3,7,19]. In
some bacteria, repetitive plasmid sequences are so similar to one another that
it is extremely difficult even to determine how many plasmids are present, as
in the case of the Lyme disease spirochete [20].

Although repeated sequences represent a diverse group of features, they
tend to fall into one of two broad categories: tandem repeats or dispersed
repeats. Tandem repeats are those that are found directly adjacent to one
another, contiguously arrayed. These are often termed “satellite” DNA. Sim-
ple sequence repeats (SSRs or microsatellites) are tandem repeats where the
repeat unit is very short, typically 1-6 nucleotides. SSRs tend to have a uni-
form distribution within genomes, and are sometimes found within protein
coding and untranslated regions of genes. Trinucleotide repeats within genes
are of special interest since they have been linked to several human genetic
disorders, including Fragile-X mental retardation, Huntington’s disease and
myotonic dystrophy [37,50,51]. The term “satellite repeat” typically refers
to repeat units greater than 100 bp, which are found as contiguous stretches
that can span up to tens of thousands or even millions of base pairs of chro-
mosomal DNA. Such satellite repeats include the 170- to 180-bp repeat units
found at centromeres of higher eukaryotes [12,23] and the long contiguous
rDNA cassettes that comprise nucleolus organizer regions [47]. The term
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minisatellites is used to refer to tandem repeats with unit lengths intermediate
to SSRs and satellites.

Dispersed repeats predominantly consist of transposable elements — mobile
sequences that can cut and paste or copy themselves to other locations in a
genome (for details, see Refs. [11,13]). Complete autonomous transposons
encode one or more proteins that are required for their mobility, and can
exceed 10 kb in length. Nonautonomous transposable elements also para-
sitize genomes; these numerous elements lack the machinery for their own
transposition and rely on the proteins encoded by other complete elements to
mediate their transposition. Transposons tend to be most abundant in regions
of heterochromatin, typically in pericentromeric regions mostly devoid of
expressed genes. These elements are sometimes found within introns of genes
or interrupting an exon, in which case the gene is likely rendered nonfunc-
tional. Dispersed repeats account for a majority of the repeat content in large
eukaryotic genomes. Little is known about the purpose of transposons; they
are often regarded as “selfish” elements that provide no benefit to the host
organism.

Molecular events resulting in gene duplication, including unequal crossing
over during meiotic recombination, recombinational repair or, at the extreme,
whole genome duplications, also generate repeated sequences. On the small-
est level, slippage of the DNA replication machinery can result in short repeats
gaining additional copies. Depending on the event responsible for the ge-
nomic rearrangement and the resulting configuration of the genetic material,
the duplicated segments may appear in tandem or at remote locations typical
of dispersed repeat families. Repeat regions are involved in multiple human
diseases, the most well-known being Down’s syndrome, which involves an
extra copy of chromosome 21. Both Huntington’s disease and Fragile X
syndrome result from an expansion of trinucleotide repeats. At another level,
repeats are used for the new science of microbial forensics; as these regions are
among the most highly variable in many species, they provide unique DNA-
based signatures that distinguish bacteria from one another, including very
closely related strains of organisms such as the anthrax bacterium, Bacillus
anthracis [49].

Rigorous studies of genome sequence repeats involve identifying similar
sequence pairs, grouping the related elements to examine their number and
distribution within the genome, differentiating repeats of known function
from those of unknown function (and genes from nongenes), and unraveling
the details of the length, number of copies and orientation of repeat elements.
Each step of the analysis is complicated by the nature of the underlying repet-
itive sequences, including the degree of divergence between related elements,
the background of genomic architectural rearrangements which disrupt or
conceal the original repeats and the resulting mosaic nature of repeat ele-



2 Algorithms and Tools for Mining Repeats

ments such that related repeats may share only a subsequence in common.
In particular, the boundaries of repeats are notoriously difficult to resolve,
complicated by issues described above coupled with the difficulty in obtaining
pairwise alignments which terminate precisely at repeat boundaries. An
often-cited statement made by Bao and Eddy [4] nicely summarizes the state
of automated repeat finding: “the problem of automated repeat sequence
family classification is inherently messy and ill-defined and does not appear to
be amenable to clean algorithmic attack”. This remains true today, although
new algorithms, tools and ideas regarding repeat analysis continue to shed
light on the problem.

Repetitive sequences impose formidable challenges to sequence analysis in
the postgenomic era. They create havoc for genome assembly; regions rich in
repeats are difficult if not impossible to assemble correctly using currently
available tools and algorithms, and often lead to misassembly of regions
flanked by repeats or excessive fragmentation of what would otherwise be a
more cohesive genome sequence (see also Chapter 2). Subsequent to sequence
assembly, genome annotation is also confounded by repeats. In particular,
the transposon sequences found between genes and within introns can be
easily mistaken for exons of protein-coding genes by gene-finding programs.
This “junk” DNA requires prior recognition and exclusion to facilitate more
accurate identification of the coveted host genes localized to the remaining
sequence (see also Chapter 5).

This chapter focuses on the algorithms and tools commonly used for iden-
tifying repeats in genome sequences. The impact of repeats on genome as-
sembly and methods used by assemblers to circumvent associated problems
are described. Additional topics include methods for clustering elements to
organize repeat families, resolving repeat boundaries, efforts to untangle the
mosaic nature of related repeats and the annotation of repeat sequences.

2 Algorithms and Tools for Mining Repeats

Sequence alignment is at the very core of repeat identification. In contrast to
aligning sequences from different genomes to identify regions of homology,
sequence alignment is applied to a single genome, as a single sequence or
collection of sequences, to identify significant intra- and inter-sequence simi-
larities. The more general application of repeat analysis is summarized as first
finding all pairwise alignments, then clustering related elements. Finding all
pairwise alignments is relegated to standard sequence alignment tools and
algorithms, a topic described in Chapter 3 and so minimally covered here.
Clustering of repeat elements into repeat families is a major challenge, and re-
cent efforts to deconvolute pairwise alignments into more meaningful repeat
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sets are described. Finding tandem repeats is a related, but distinct challenge;
a vast amount of literature exists on this topic, describing algorithms and tools
which are specially designed for this aspect of repeat structure. Because of
this, tandem repeats are the focus of a separate section in this chapter.

2.1 Finding Intra- and Inter-sequence Repeats as Pairwise Alignments

Pairwise sequence alignment algorithms are well suited to the problem of
repeat identification; due to the enormous complexity of the problem in large
genomes, heuristics are required to improve efficiency. The Smith-Waterman
alignment algorithm [54] finds the single best-scoring local alignment between
two sequences. If the sequences being compared are two distinct entries from
the collection of sequences corresponding to the single genome under study,
this best local alignment would suffice as a repeat. This approach cannot
be used, however, when the genome is a single contiguous sequence, as is
often the case for complete bacterial, archaeal and viral genomes. Comparing
a sequence to itself to find the best local alignment would yield only the
obvious perfect alignment along the diagonal corresponding to the align-
ment of the sequence matching itself from beginning to end. A modification
to the Smith-Waterman algorithm, as described by Waterman and Eggert
[58], affords the identification of all nonintersecting high scoring alignments,
rather than just the single best local alignment between two sequences (see
also Chapter 3). This modification unravels the internal repetitive struc-
ture of a sequence when aligned to itself. Huang and Miller [24] describe
the sim algorithm, which yields all high scoring nonintersecting alignments
using linear space, and the lalign utility of Bill Pearson’s fasta2 toolsuite
(http://ftp.virginia.edu/pub/fasta/) is a popular tool that implements this
algorithm. The accompanying plalign utility generates an illustration of the
repetitive structure as a postscript file.

Although these algorithms are well suited to repeat finding, they are simply
not fast enough to tackle large genomes and so we turn to heuristics. The
“seed and extend” heuristic is perhaps the most common strategy to quickly
ascertain significant pairwise alignments between sequences. Early uses of
this strategy include the FASTA algorithm [43], followed by the hugely popu-
lar BLAST algorithm [1,2], among other database search and alignment tools
including MUMmer [14, 15, 32], PatternHunter [35,36] and BLAT [29], and a
less well known but similarly useful tool for studying repeats called ICAass
[41], the repeat mining utility of the Miropeats software [42]. Here, matches
to exact words of predefined length provide the seeds for alignments, which
are extended in both directions to extract the maximal scoring alignment
containing the seed (see also Chapter 3). A major limitation of these methods
is the requirement of a predefined seed length. A seed length that is too short
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requires numerous extensions, few of which lead to significant alignments. A
seed length that is too long involves fewer extensions, but many significant
alignments may lack such a seed and are missed. The programs MUMmer
and Reputer [31, 33] take a more sophisticated approach, employing a suffix
tree data structure to find exact word matches. The suffix tree is not limited
to finding seeds of a constant length; all exact matches are found regardless of
length and this is done very fast, in linear time and space.

The focus of repeat-finding software can vary; the focus may be to find all
matching substrings within a sequence or among a collection of sequences,
or the focus may be the postprocessing of pairwise alignments to cluster
related elements into families, resolve repeat boundaries or to illustrate the
mosaic nature of repeated sequences. Progress in repeat analysis, as in other
areas, builds upon previous contributions to the field. As such, we present an
overview of each contribution in roughly chronological order.

2.2 Miropeats (alias Printrepeats)

Miropeats [42] is perhaps one of the earliest and most popular repeat-finding
analysis tools to find widespread use in genome sequence analysis (see, e.g.
Refs [52]). The repeat-finding engine of Miropeats is the program ICAass
of the ICAtools suite [41]. ICAass finds maximal gap-less aligned segment
pairs (MSPs) within a single sequence and /or among a collection of sequences
using a “seed and extend” strategy similar to that used in BLASTN [1b].
All overlapping 8-mers are loaded into a hash table, using two-bits per base
encoding and so allowing 4 bases per byte. All sequences to be examined
are indexed and the 8-mers are then used to seed potentially longer align-
ments. Those ungapped alignments meeting the minimum score threshold are
reported. While the ICAass program includes additional components, only
the MSP identification steps are utilized by Miropeats. Miropeats is a Unix
C-shell script that calls ICAass to identify MSPs as repeats, and then writes
a postscript file which illustrates the positions and associations among the
repeats. Arcs are drawn between the matching end-points of each repeat pair
and arcs are drawn in such a way to help ascertain their relative orientation
and overlap. Although ICAass is used, in theory, any program capable of gen-
erating meaningful pairwise alignments could be employed, including BLAST
(i.e. WU-BLAST with the -span option selected), BLAT or PatternHunter,
although Miropeats would require some minor customization to accept this.
The strength of Miropeats as a repeat analysis tool lies in its illustration
capabilities, particularly with respect to those repeats found in close proximity
along the nucleotide sequence, e.g. the structures of transposable elements
typically include some form of terminal repeat, either direct or inverted, at
the elements’ boundaries. The illustration of repeats within transposon-rich
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regions helps to elucidate their terminal repeat structures as well as their rela-
tive abundance along the genomic contig; an example is provided in Figure 1,
where the long terminal repeats (LTRs) of a gypsy-family retrotransposon are
nicely illustrated by the Miropeats software). (A “contig” is a contiguous
stretch of DNA without gaps. Whole-genome shotgun (WGS) sequencing
projects generally produce nearly complete genomes that consist of a set of
contigs separated by gaps.) As with other repeat-finding applications, the use
of Miropeats extends beyond repeat analysis and includes additional areas
of sequence comparison, such as to position a small set of bacterial artificial
chromosomes (BACs) in a section of a genome BAC tiling path by defining
the overlaps among their ends (see also Chapter 2). Due to the relatively
slow ICAass repeat-finding step and because of the static illustration of the
repeat structures provided by Miropeats, the software is limited in practice to
analyzing sequences whose length is no more than a few hundred thousand
base pairs, although application to longer sequences is not restricted.

2.3 REPuter

Of the methods available for finding repeated strings in genomic sequences,
those based on suffix trees are most efficient and practical for large-scale
genome analyses. A suffix tree is a data structure specifically designed to
capture a text string and all of its substrings, which makes it well suited
for capturing DNA and protein sequences. The tree itself is set of nodes
and edges, where each edge is labeled with a string. A suffix of a string S
(which might be an entire genome, for example) is simply a substring that
starts within S and extends to the end of S. A suffix tree represents all suffixes
of S implicitly; each suffix is a path from the root node to a leaf node of S.
Internal nodes of S represent other (nonsuffix) substrings; in fact, a suffix
tree contains all substrings of S. Suffix trees represented a major advance
over previous sequence analysis techniques because of two key properties:
(i) the size of the tree is a linear function of the size of the sequence, and (ii)
the tree can be constructed and searched in linear time. This contrasts with
alternative sequence alignment methods, which are quadratic in time, space
or both. Details regarding construction and search algorithms for suffix trees
are described in Ref. [22].

Stefan Kurtz’s REPuter software [31,33], the first production quality repeat-
finding software to employ suffix trees, can mine complete eukaryotic genomes
(megabase pairs) for all maximal repeats in a matter of seconds on a personal
computer. REPuter has existed in two versions. The earlier version, first
described in 1999, was limited to finding identical maximal repeats. An
enhanced tool suite was released under the package name REPuter in 2001
with the search engine named REPfind, capable of extending the problem of
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repeat finding from identical repeats only, to approximate repeats, allowing
for mismatches and indels. Each version introduced key concepts and
contributions to repeat analysis, so each is described here in order of their
availability. To distinguish between the two versions, the earlier version is
referred to as REPuter and the later version as REPfind.

As stated earlier, REPuter is limited to finding exactly identical maximal
repeats; the repeats are maximal in that extending the alignment between
two paired sequence regions would introduce a mismatch and violate the
requirement of identical sequence pairs. REPuter can find the following four
classifications of repeats, each exemplified using the 4-mer “gcta” and the
forward sequence orientation (top strand only):

Forward: 5'-gcta-3’' with 5'-gcta-3’
Palindromic (reverse complemented or inverted): 5'-gcta-3' with 5'-tagc-3’
Complemented: 5'-gcta-3’' with 5'-cgat-3’
Reversed: 5'-gcta-3’' with 5'-atcg-3’

Although cataloguing all identical sequence substrings is a useful component
of repeat analysis, few repeats, unless very recently duplicated, will be free of
mismatches or indels. As a result, these repeated identical substrings are often
parts of larger repeat units that are nonidentical, although detectibly similar
in sequence. REPfind takes this into account and is able to find degenerate
repeats, allowing for mismatches and insertions/deletions (indels) as part of
the larger repeats.

REPfind exhaustively finds all degenerate repeats in a genome sequence
given a user specified minimum length and maximum number of errors. Er-
rors are measured by one of two methods: hamming distance or edit distance.
Hamming distance corresponds to the number of mismatches in a gap-free
sequence alignment. Edit distance includes the number of differences in
an alignment possibly containing indels. The identification of approximate
repeats relies on the basis that every degenerate repeat contains a substring of
identical sequence.

To find approximate repeats, REPfind locates all exact word matches fol-
lowed by an extension process to determine if the word match is part of
a longer degenerate repeat. Approximate repeats of two types are found:
maximal mismatch repeats using the MMR algorithm and maximal difference
repeats using the MDR algorithm, as described below. Both types of repeats
rely on the existence of an exact word match; the exact word matches are
found as described earlier by the original REPuter software.

The MMR algorithm finds a gap-less maximal mismatch repeat by looking
for the longest alignment that contains the seed and has no more than k mis-
matches (the degenerate repeat in this context called a maximal k-mismatch
repeat; here k is a specified parameter. This is done by identifying the first k + 1
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mismatched nucleotides to the left of the seed [ordered from left to right (I3,
I, ..., Ik 4+ 1))] followed by identifying the first k + 1 mismatches to the right
of the seed (ordered r1, 12, ..., 7t 4 1)), with the mismatches I; and 7 1)
bounding a sequence region of k mismatches from the left or right of the seed
boundary, respectively. For all values of i, from 1 to k + 1, the substring with
coordinates /; + 1 to r; — 1 contains exactly k mismatches. The k-mismatch
substring with the greatest length is reported.

The MDR algorithm extends seeds taking into account insertions and dele-
tions. The idea is similar to the MMR algorithm in that k-differences are
explored to each side of the seed, and the combination of coordinates within
this range which maximize repeat length and satisfy the k-mismatch criteria
are chosen. The primary difference is that, instead of searching for nucleotide
differences along a single dimension as with MMR, a search is performed in
two dimensions allowing for insertions and deletions. A dynamic program-
ming matrix banded at + %+ (k + 1), extending from both ends of the seed, is
used to find all alignment termini yielding each of 1 to k maximum number
of mismatches. Each pair of alignment termini are examined and the pair of
left and right termini providing the longest repeat length and a maximum of
k-differences is reported.

It is often the case that a single maximal k-difference repeat will contain mul-
tiple seeds. To avoid outputting distinct maximal k-difference repeats which
contain seeds of neighboring k-difference repeats, the alignment extensions to
the left of a target seed are restricted to the right of any previously occurring
seed. This guarantees that each maximal k-difference repeat will derive from
the extension of its left-most containing seed.

By default, REPfind reports only exact matches, as done by the earlier
REPuter program. Options are available to pursue either k-mismatch repeats
using the MMR algorithm or k-difference repeats using the MDR algorithm.
Unless there is a keen interest in obtaining gap-less repeats only, it is sensible
to mine maximum difference repeats exclusively using the MDR algorithm,
given that it will report maximum matches with or without gaps, whichever
provides the maximal k-difference repeat. Rather than setting the k-value
directly, the user can specify the parameter values of minimum repeat length
and a maximum error rate, from which the value of k is computed internally.

An improvement over the earlier REPuter software is the inclusion of sta-
tistical significance for each of the repeats found in the form of an E-value (see
Chapter 3 for an explanation of the concept of an E-value). In the case that
multiple solutions exist for the maximal k-mismatch or k-difference repeat,
the single repeat yielding the sequence with the smallest E-value is reported.
By selecting the option “-allmax”, each solution is reported in the case of ties
among candidates meeting the maximum length k-difference criteria.
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REPuter is available to researchers in several forms: a set of command-line
driven utilities for local installations, a comfortable web interface for more
interactive and targeted analyses and most recently as a web service enabling
distributed computing environments with repeat analysis capabilities.

We should note that the REPuter package, although still widely used and
available to researchers, has more recently been subsumed by the Vmatch
large-scale sequence analysis software (Kurtz, unpublished; http://www.
vmatch.de). Improvements include the use of suffix arrays in place of suf-
fix trees, which reduces memory requirements and processing time. Also,
the alphabet of sequences to be aligned is no longer restricted to nucleotide
characters, allowing one to examine protein sequences as well.

2.4 RepeatFinder

Given fast and efficient methods to detect pairwise similarities within or
among sequences, some repeat analysis software is devoted to the postpro-
cessing of pairwise alignment data to collect and organize the repetitive se-
quences identified. An early example of this is the Repeat Pattern Toolkit
(Agarwal and States [1a]) applied to the clustering of WU-BLAST ungapped
alignments derived from 3.6 Mbp of the Caenorhabditis elegans genome, placing
the alignments into a graph, and finding the minimum spanning tree for
connected components to represent the relationships between repeats. A more
modern approach involves the postprocessing of repeats found using suffix
trees.

Natalia Volfovsky’s RepeatFinder [56] uses a catalog of exactly repeated
strings to further refine the definitions of individual repeated elements fol-
lowed by the construction of repeat classes. In contrast to our canonical
definition of a repeat as a pair of sequences which share similarity from
beginning to end, RepeatFinder describes merged repeats where a merged
repeat is found elsewhere in the genome at least once, and may be found
in partial copies. The exactly repeated strings are found using the original
REPuter software; a newer version of RepeatFinder uses REPfind. These exact
matches compose the initial repeat set and these are redefined as repeat ele-
ments using a merging procedure. Since repeated sequences are expected to
contain mismatches and indels, few complete repeats will be reported as exact
matches. The merging procedure serves to consolidate regions defined as
repeats that are found in close proximity or overlapping along each genomic
sequence. By doing so, indels and mismatches fragmenting single repeats
into disparate word matches are merged into larger degenerate repeats, and
the dispersive and the fragmented nature of repeat regions is accounted for
(i.e. portions of a larger repeat may be found as separate fragments elsewhere
in the genome). The merging procedure to redefine repeat regions is restricted
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to either merging overlapping repeats, or merging neighboring repeats, with
minimum overlap or gap size as user-specified parameters, respectively.

Each merged repeat retains a list of all the originally identified repeats
(considered subrepeats) contained by it. Clustering of related merged repeats
is done by grouping those merged repeats containing subrepeats in common
into the same class. In order to further collapse clusters of similar elements,
an “all-vs-all” BLASTN search is performed and separate clusters containing
elements with sequence similarity (below a specified E-value threshold) are
grouped into a single cluster.

Although the software is useful for rapidly extracting repetitive sequences
from the genome and grouping related elements, the boundaries of the repeats
remain ill-defined and all members of each cluster are not guaranteed to
be similar to each other given the transitive relationships established via
the clustering algorithm employed. More sophisticated clustering methods
employed by RECON [4] address these issues more satisfactorily.

2.5 RECON

Bao and Eddy’s development of RECON [4] for repeat analysis was viewed
as a pioneering effort, as it represented the first tool to attempt to delineate
boundaries of repeat elements in a biologically meaningful way. The algo-
rithm of RECON is broken down into the following major tasks: obtaining
pairwise alignments among the input sequences, defining elements based
on the pairwise alignments and, finally, grouping elements into families. In
contrast to RepeatFinder which obtains the pairwise alignment data using
REPuter, RECON uses BLASTN of the WU-BLAST package [21]. The process
of defining repeat elements based on pairwise alignment data is illustrated in
Figure 2.

Repeat elements are initially defined by collapsing the overlapping pairwise
alignments along the genomic sequence (Step II in Figure 2). Multiple align-
ment information is used to infer the boundaries of the element, and also to
recognize and partition those elements found to be composed of multiple dis-
tinct repeat units. Given the set of overlapping alignments that initially define
arepeat element in the genomic sequence, a preponderance of alignment ends
found clustered to a short region of genomic sequence signifies a boundary
of an element. Some candidate boundaries may be misleading because they
derive from related but distinct repeat elements, those which share subrepeats
in common, but are otherwise different. Misleading alignments between pairs
of elements are identified by their proportionally large amount of unaligned
sequence when compared to the entire element lengths (not shown). These
are then discarded from subsequent element boundary refinement methods.
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Figure 2 RECON's algorithm for defining short windows are used to redefine

repeat elements. In the first stage, WU- element boundaries and initial elements
BLAST is used to generate pairwise are repartitioned at these boundaries into
alignments. These pairwise alignments are separate elements. Short elements likely
collapsed along the genomic sequence resulting from falsely extended alignments
to define regions of alignment coverage. (from the first step) are removed to yield the
Clusters of alignment boundaries within refined final element set.

After eliminating the misleading alignments, the remainders are examined
for the purpose of boundary refinement. Aggregations of alignment end-
points are identified by sliding a short window of predefined length (default
30 nucleotides) along the repeat element, clustering all neighboring align-
ment ends found separated by no more than the window size. The ratio of
alignments with clustered ends to the total number of alignments spanning
the corresponding region is used as an indicator of the significance of an
aggregation point. A ratio above a specified threshold (default of 2.0) infers
a boundary condition and the boundary is defined as the mean coordinate
value for the clustered ends. Upon finding a significant aggregation point,
the original element is considered composite. The composite element and
its underlying supporting alignments are split at the boundary, and the split
alignments are reassigned to their corresponding split element (Step III of
Figure 2). Elements without significant aggregation points remain as origi-
nally defined. Split elements or the split supporting alignments found shorter
than a minimum length cutoff are presumed artifacts due to the short random
extensions that occur in pairwise alignments and these are discarded (Step IV
of Figure 2). The remaining elements provide the set of repeats with defined
boundaries.

Following the identification of the individual repeat elements as described
above, the elements are classified into families. Special effort is taken to
group related but distinct families separately. First, candidates for family
membership are chosen by examining alignments between element pairs.
For the purpose of clustering the elements, a graph is constructed in which
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elements are represented by nodes and relationships between nodes repre-
sented by edges. Edges are classified into two types: primary edges are
used to link elements of the same family, those elements found to align to
more than a specified threshold of length coverage of either element (default
90%); secondary edges link elements of different but related families that
contain significant alignments but below the threshold of alignment coverage
required for family membership. Before clustering family members based on
the primary edges, all edges require reevaluation because some edges may
have been falsely classified as primary edges. Partial elements are easily
misclassified with primary edges during edge assignment since they pass the
alignment coverage test with complete elements to which they are compared.
It is by virtue of the secondary edges that false primary edges are identified
and remedied. False primary edges are found via triangles of inequality: for
example, elements A and B are deemed from the same family (primary edges),
and elements A and C are deemed from the same family (primary edges), but
elements B and C are deemed from separate families (secondary edge). In this
case, element A is presumed partial given that it aligns with high coverage
separately to the two elements B and C, which themselves lack significant
coverage of alignments between them. To prevent element A from grouping
the two related but distinct families together, all but the single primary edge
extending from A, corresponding to its most similar element, are removed.
Following the conversion of false primary edges to secondary edges, all the
secondary edges are removed and families are generated by transitive closure
of the remaining primary edges.

The algorithm of RECON addresses the problem of delineating the bound-
aries of individual repeat elements as they are found in the genomic sequence,
but it does not describe the mosaic nature of the related repeat elements
nor the consensus boundaries and length of a prototypical element among
a family of elements. A rough consensus sequence for large RECON-defined
repeat families can be derived from alignments of the longest repeat elements
within each large family. This is a useful approximation and works well for
some repeat families, but is not rigorous enough to yield a consensus for each
repeat family in a biologically meaningful way.

2.6 PILER

As discussed in the Introduction, repeats are diverse features, with wide vari-
ety in size, location and biological function. Major classes of repeats, including
dispersed or tandem repeats, yield specific patterns in the context of whole-
genome self-alignments. Bob Edgar’s PILER [16] includes a suite of tools each
of which focuses on specific patterns evident in sets of alignments to reliably
identify elements of the corresponding repeat class. Examples of patterns
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Figure 3 Patterns of sequence alignments A1, Ay and As. (b) The “pyramid” pattern
targeted by PILER. Dot plots are shown fora  generated by alignments from a stretch of

comparison of a genome sequence against tandem repeats By through By, indicating
itself, with the dotted line as an indicator of a repeat length of a. Figures were derived
the main diagonal of the plot. (a) Patterns from Ref. [16], and reproduced here with
of alignments generated by alignments of permission from author Bob Edgar and
members of a family of dispersed repeats Oxford University Press.

sought by PILER are illustrated in Figure 3. The individual tools of PILER and
corresponding repeat classes are: PILER-DF for detecting individual intact
elements of a dispersed repeat family, PILER-PS to find pseudo-satellites,
PILER-TA to find tandem arrays, and PILER-TR to find repeat elements that
have terminal repeats (a common characteristic of intact transposable ele-
ments).

Similarly to RepeatFinder, RECON, and other repeat finding and cluster-
ing tools, a set of intra-genome alignments is required. Rather than rely
on REPUTER or BLAST to generate alignments, PILER includes an efficient
alignment program called PALS (Pairwise Alignment of Long Sequences),
which is specially designed with optimizations for detecting repetitive se-
quences; optimizations targeted towards searching a sequence against itself,
limiting searches to banded regions and unrestricted reporting of numerous
colocalized alignments, among others. After generating all alignments, over-
lapping hits along the genome sequence are linked together into a “pile” of
contiguously overlapping alignments. These piles of hits are further subjected
to specific analyses provided by the PILER-* utilites.

PILER-DF is designed to detect “Dispersed Families” of repeats with char-
acteristics of transposable elements. The specific signature of a dispersed
family as revealed by pairwise alignments is illustrated in Figure 3(a). The
isolated elements are found as globally alignable regions, all with alignments
of similar lengths. The goal of PILER-DF is to find aligned pairs that have
similar characteristics. This is done by analyzing aligned sequence pairs such
that each aligned region is found in a different pile (dispersed). Given a
pairwise alignment between X and Y, such that X and Y are in different piles,
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an edge is drawn between X and Y if each aligned region spans most of its
corresponding pile [(length of X)/(length of pile containing X), (length of
Y)/(length of pile containing Y)]. After examining all pairwise alignments
in this matter, all connected components are found in the resulting graph.
The connected components are interpreted as dispersed families of complete
repetitive elements.

PILER-PS searches for “Pseudo-Satellites; — repeats with features of satel-
lite sequences in that they are found clustered locally in the genome. The
algorithm here is identical to PILER-DF with the exception that the pairwise
alignments result from a banded search, requiring that the alignments be in
close proximity to one another.

PILER-TA finds “Tandem Arrays”. The repeat-finding tools described so far
are mostly limited or specially tuned to find dispersed repeats. PILER-TA is
an exception in that it purposely mines these features from the genome. Please
note that the general topic of finding tandem repeats is the major focus of the
next section of this chapter and so it will be mentioned only briefly here as it
relates to PILER. Sequences arrayed in tandem leave a specific signature in the
pairwise alignments termed “pyramids” (see Figure 3b). The first observation
is that pairwise alignments in a given pyramid are restricted to the same pile
since all of them overlap. A banded search is used to find pairs of alignments
within a pile that have the following characteristics: the shorter alignment
pair is at least half the length of the longer alignment pair, and the distances
between the alignments’ respective start and end coordinates are each within a
predefined percentage of the shorter alignment length. All pairs of alignments
meeting such criteria are connected by an edge and, at completion, all con-
nected components are gathered. Each connected component is interpreted as
a tandem array. Simple heuristics are employed to define boundaries between
the individual repeat elements. Diagonal distances that are in good agreement
define the element length and sequences of this length from hit end-points
provide representative elements of the array.

PILER-TR finds families of elements with “Terminal Repeats”. This search
is geared towards finding transposable elements with terminal repeats, such
as the long LTR retrotransposons. The signature of these features is a set
of repeats, about 50-2000 bp, separated by anywhere from 50 to 15 000 bp
(all default parameters). A banded search is used to find candidate terminal
repeats. To avoid reporting tandem repeats and pseudo-satellites that would
also be found via a banded search, these are found and masked as a prereg-
uisite to this search. After finding candidate terminal repeats, a second search
is carried out to find different elements with matching terminal repeats, in
which case a nonbanded regular search is performed. All candidates with
matching terminal repeats are clustered and reported as families of terminal
repeat elements.
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2.7 RepeatScout

Alkes Price and Pavel Pevzner’s RepeatScout [46] takes a distinct approach
to repeat family identification, which circumvents some of the difficulties
associated with the more traditional approach involving the postprocessing
of pairwise alignments. Generating pairwise alignments as the first step
of repeat sequence identification can take a long time, utilize many CPU
cycles and generate copious output that can consume an enormous amount
of disk space. With large genomes, this can be intractable and further effort
is required to partition data sets into more manageable inputs, all of which
can adversely affect the results obtained. In contrast, RepeatScout employs a
repeat family search stage heuristic similar to that used in database-searching
algorithms like BLASTN [1b]. Where BLASTN requires that two potentially
homologous sequences share at least one exact word match in common, Re-
peatScout requires that all initially targeted members of a repeat family share
at least one exact word in common. In basic terms, RepeatScout uses an exact
word match (seed) to identify potential members of a repeat family, and then
maximally extends alignments of all targeted regions to the left and right
of the seed to compute a consensus sequence representation of the repeat
family with repeat boundaries optimized. The specifics of this approach are
described below.

The first phase of the RepeatScout algorithm involves scanning the genome
for frequently occurring words. A collection of genomic sequences are
scanned and the positions of all words of user specified length (i.e. 13-
mers) are catalogued. Closely spaced repeat word occurrences are ignored to
avoid tandem repeats [tandem repeat finding is relegated to Tandem Repeat
Finder (TRF) [9] and is not an objective of RepeatScout]. After the scanning
is complete, frequently occurring word matches are fed to the final phase
of RepeatScout — the repeat family identification and consensus sequence
construction stage.

Starting with the most frequently occurring word, RepeatScout attempts to
extend all such word occurrences to the left and to the right, terminating the
extension at what are considered to be the most appropriate boundaries of the
repeated element, and simultaneously generating a consensus sequence for
this repeat family. The extension phase is perhaps the most distinctive and
critical feature of the RepeatScout algorithm, and it is the extension algorithm
that rigorously defines the repeat boundaries. The consensus sequence gen-
erated by the word extension phase is optimally aligned to all members of
that repeat family and cannot be further extended without reducing the total
alignment score. This is accomplished by the following objective function,
which computes the score of the consensus sequence as the sum of the scores
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of each individual repeat element aligned to the consensus:

A(Q;S1,...,5:) = {Zmax{a(Q, Sk),O}J — ¢+ length(Q)
k

where a(Q, Sx) corresponds to the score of an alignment between the consen-
sus sequence Q and a genome sequence substring (Sy) of equal length that
extends from both ends of the seed. The constant ¢ imposes a minimum
threshold on the number of individual repeat elements (S,) that must align
with the consensus sequence to provide a suitable representation of a repeat
family.

The choice of alignment function a(Q, Sx) determines how the consensus
sequence boundaries are positioned. With a Smith—-Waterman local alignment
function [54], short partial repeats would not be penalized and spurious align-
ment extensions to the more complete elements could drive the consensus
boundary position beyond more appropriate repeat boundaries. Towards the
other extreme, a fit-alignment algorithm, which fits one sequence into another
[57] could be used to force all underlying complete and partial elements
to match the consensus, but this can have the affect of yielding consensus
boundaries that underrepresent the true boundaries. As a more suitable
compromise between these two scenarios, the authors introduce a fit-preferred
alignment function that yields a consensus sequence shared by some but not
all of the underlying complete and partial copies. The fit-preferred alignment
function is described below:

f(i,0) = max(—vi,—p),

f(0,j) =0,
fli—=1,j—1) +n;
A fj=1)—v
o= fli-vj)-v
-p

a(Q,S) = max
ij

{ fGg) if i=1Q

fj) —p if 1 <]Q

where the match/mismatch score is provided by p;;, the gap penalty score
by vy and the fixed incomplete-fit penalty provided by p. Here, f(i,]) is the
score of a best alignment between the 1, ..., i characters in the consensus
sequence Q and 1, ..., j characters in the repeat element S. The fit-preferred
alignment score a(Q, S) is simply f(i,j) if the best alignment includes the
entire consensus sequence. If not, the incomplete-fit penalty is subtracted
from the best alignment score, penalizing the alignment for not including the
entire consensus sequence.
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The fit-preferred alignment algorithm is used by RepeatScout to generate
alignments separately to the left and to the right of the word match. The
fixed incomplete-fit penalty (p) is subtracted from the score of any optimal
alignment to the consensus sequence that fails to extend all the way to the
left boundary of the consensus sequence; an analagous penalty applies to
the right boundary. If the alignment is incomplete on both boundaries, the
penalty is subtracted twice. The result is that partial copies of the element
are penalized in the presence of longer, more complete elements, and the
consensus sequences that are generated are more suitable representations of
the underlying repeat copies targeted by the exact word match. False-positive
candidate elements targeted by the initial word matching strategy do not
pose problems for RepeatScout; these will acquire negative alignment scores
and are eliminated from contributing to the consensus by virtue of the main
objective function.

The most rigorous approach to generating the consensus sequence would
involve n-dimensional dynamic programming (where n is the number of
sequences), but this would not be practical or even possible for more than a
few sequences given that this task would be NP-hard. Instead, a heuristic
approach is taken to generate the consensus whereby the word match is
extended to the left and right one nucleotide at a time. A single nucleotide ex-
tension is attempted using each of the four nucleotides (G, A, T and C) and the
single nucleotide extension providing the optimal alignment score is chosen.
The consensus sequence is constructed greedily in this way until a maximal
score is obtained and a predetermined number of subsequent iterations fails
to improve upon this maximal score. The consensus sequence providing the
maximal score is chosen to represent the underlying set of repeats and the
termini of the consensus sequence delimit the repeat boundaries.

The RepeatScout algorithm, as described, is applied to each frequently
occurring word match, beginning with those most frequent. As a single
repeat family is likely to contain many exact word matches, effort must be
taken to prevent re-identifying the same repeat family based on other yet-
to-be processed frequently occurring words. In an attempt to prevent this
effect, the counts of words found within approximate occurrences of the
consensus sequence are readjusted within the set of frequently occurring
words, decreasing the chance but not absolutely preventing the possibility
of finding the same (or a portion of a) repeat family identified previously.
A future release of RepeatScout may improve upon this functionality for
identifying approximate occurrences of the consensus sequence, in order to
more completely preclude repeat family rediscovery based on subsequent
word matches.

The task of finding occurrences of repeat family members in the genome is
relegated to searching the genome with the database of consensus sequences
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using RepeatMasker, BLAST or another sequence search and alignment util-
ity. These homology searches may find repeat elements that have diverged
considerably from those used by RepeatScout to generate the consensus (i.e.
they lacked an exact word match required to be included in the consensus
sequence construction stage of RepeatScout). This procedure provides a pow-
erful mechanism to rigorously identify and annotate the individual elements
of a larger repeat family.

3 Tandem Repeats

Tandem repeats form a special class of repetitive sequences, composed of a
contiguous stretch of two or more copies of a repeat pattern. The length of
the repeat pattern is called the period. This class of repeats, termed satellites,
is of great biological relevance, found to correspond to specialized structures
within eukaryotic genomes such as the short pentamer to heptamer repeats
that form telomeres, and the longer repeats that form centromeres (e.g. 180-
bp period repeats in Arabidopsis). Microsatellites (SSRs), found both within
and between genes, are of great interest to those studying biodiversity and
population genetics, and for DNA fingerprinting studies. Expansions in trin-
ucleotide repeats have been correlated with various disease states, including
Huntington’s disease and Friedreich’s ataxia, among others.

The problem of finding tandem repeats has received much attention from
computer scientists and biologists alike, due to both the tractability of the
problem from an algorithmic perspective and because of the importance of
tandem repeats in their diverse biological roles. The challenge of finding
tandem repeats involves identification of the repeated pattern and the number
of times the pattern is repeated. Over the past decade, many algorithms
have been proposed for the identification of tandem repeats, some of which
seem to be academic exercises in algorithm development and few are found
implemented in publicly available software for the general application of
tandem repeat finding in the postgenomic era. One exception is Gary Benson’s
TRF [9], which has seen widespread use in genome sequence analysis and
remains the most popular tandem repeat analysis software today. Alternative
tools for finding tandem repeats have recently become available and extend
the repertoire of essential software available to genome researchers. Here, we
survey a few of these tools and describe the algorithms employed for finding
tandem repeats.
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3.1 TRF

Gary Benson’s TRF is a powerful software tool capable of finding exact and
approximate (containing mismatches or indels) tandem repeats in genomic
sequences [9]. The algorithm employed in TRF is broken into two stages; first,
the detection component which identifies candidate tandem repeats using a
set of statistical criteria, followed by the analysis component calculates the
consensus repeat pattern and period size using sequence alignment methods.

TRF initially detects tandem repeats based on the premise that similar
sequences found contiguously arrayed are likely to share exact substrings,
and the distance between paired substrings will be approximately the same
and correspond to the period of the tandem repeat. In a search for these exact
substrings that may target a tandem repeat, the genomic sequence is scanned
from left to right for exact word matches, with some fixed word length w.

All further analyses of the candidate tandem repeat during this detection
phase rely on statistical analyses whereby the alignment between candidate
tandem repeats are modeled as a sequence of independent and identically
distributed (iid) Bernoulli trials, equivalent to a sequence of coin tosses such
that heads correspond to matching pairs of nucleotides, and tails correspond
to mismatches or indels. The probability pM of a match and the probability
pl of an indel are user-defined parameters that provide an upper limit to the
allowed divergence between candidate tandem repeats.

The probabilistic model of the iid Bernoulli sequence is used with several
statistical criteria to evaluate candidate tandem repeats: the sum of heads
distribution to dictate the number of matches required among candidate re-
peats; the random walk distribution to model the indels between tandem repeats
that might cause variability in the apparent period length; the apparent size
distribution to distinguish between tandem repeats and dispersed repeats by
analyzing the distribution of matches along the proposed period length; and
the waiting time distribution to choose match search criteria that are most
suitable for different period lengths. Each of the above distributions depend
on the period length, word length used for scanning matches, and the user-
defined cutoffs of pM and pl.

During the scan of the genomic sequence from left to right, word matches
are accumulated. The position of each word is kept in a history list and
the distance between word matches is kept in a distance list. Once a word
match is found, the distance separating the words is presumed a candidate
period length for a tandem repeat. The candidate tandem repeat would
require additional matches along the remainder of its period length. These
additional matches are found by querying the distance list, searching for word
matches separated by the same period length, with the leading word match
positioned between the triggering word matches. The statistical test using
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the sum of heads distribution determines the minimum number of matches
required for a candidate tandem repeat. Here, the normal distribution is used
to determine the minimum number x of matches, such that 95% of the time,
at least x nucleotides (heads) are counted as part of exact word matches (head
runs of length w) along the period length. To account for indels between
word pairs of approximate tandem repeats, the period length is not fixed at
a constant during this phase, but allowed to vary slightly, consistent with
the random walk distribution. The allowed variation is restricted to that
expected within 95% of random occurrences based on the indel probability pI,
under the hypothesis of a random walk along one dimension with maximal
displacement equal to d*pl.

Candidate tandem repeats which pass the sum of heads test are further
analyzed to differentiate tandem repeats from local repeats that are not ar-
rayed in tandem. Tandem repeats are distinguished from nontandem direct
repeats, i.e. repeats found in close proximity but not directly adjacent, by
the distribution of matches along the period length of the candidate tandem
repeat. Nontandem direct repeats will tend to have matches concentrated
on the right side of the period length (because the algorithm processes them
from left to right), whereas the tandem repeats should have leading word
matches distributed throughout. The apparent repeat length is calculated
as the maximal distance between the first and last run of matches found
using the exact word match scan. This apparent repeat length is likely to be
smaller than the actual repeat length, but provides a useful approximation
for this analysis. A minimum apparent repeat length threshold for a tandem
repeat is determined by simulation. An apparent size distribution is generated
from random Bernoulli sequences using the pM value to model an alignment
between two genuine tandem repeats with period length d, and the distances
between the first and last runs of exact word matches are collected. A mini-
mum apparent repeat length is chosen such that 95% of the time, the apparent
repeat length determined for random Bernoulli sequences with pM exceeds
this cutoff length. Candidate tandem repeats passing the minimum apparent
repeat length threshold are further subjected to the analysis component.

The waiting time distribution is used to pick word lengths used during
the initial genome scan. Random Bernoulli sequences are used to determine
the minimum number of aligned residues (coin tosses) to find an exact word
match (run of heads) of length w, 95% of the time, given a probability of
a match (pM or probability of heads). As with other sequence alignment
software, such as BLAST, the choice of word length is very important and
affects the sensitivity and running time of the analysis. Short word lengths
accumulate large history lists and many false-positive matches, unlikely to be
indicative of tandem repeats. Alternatively, large word lengths accumulate
few false positives, but are unlikely to detect short approximate tandem re-
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peats. Therefore, the word length needs to be chosen in accordance with the
repeat length under consideration. The waiting time distribution is used to
pick a set of word lengths to apply to different ranges of pattern sizes, given
pM. Word lengths of 3-7 bp are chosen to detect tandem repeats with periods
of up to 500 bp and at least 75-80% identity.

Those candidate tandem repeats passing the above statistical criteria are
further examined under the analysis component of TRE. The analysis com-
ponent involves aligning the interval of the candidate tandem repeat to the
surrounding genomic sequence using the technique of wrap-around dynamic
programming (WDP) [18], nicely described in Ref. [10] and Appendix A of
Ref. [8]. The technique of WDP provides a method whereby a single copy
of the tandem repeat can be aligned with all copies in a larger stretch of
genomic sequence, such that the alignment is allowed to wrap around the
tandem repeat from end to beginning again, to continue alignments to the
subsequent copies of the repeat. The candidate tandem repeat used in WDP
may not be the optimal sequence, as the consensus among the repeat copies
may contain nucleotide differences or indels when compared to the initial
candidate used to generate the alignments. A consensus pattern is generated
from the alignment, and this consensus is realigned to calculate the period
length and number of copies of the tandem repeat. TRF is limited to finding
tandem repeats with unit lengths up to 500 bp.

3.2 STRING (Search for Tandem Repeats IN Genomes)

The algorithm underlying STRING relies almost exclusively on sequence
alignment methods to identify tandem repeats [40]. As with TRF, the al-
gorithm consists of two stages; first, the identification of candidate tandem
repeats, followed by a more detailed analysis stage to resolve the tandem re-
peat structures. The identification of candidate tandem repeats involves what
are referred to as autoalignments, which involves aligning a sequence to itself.
A variation of the Waterman-Eggert algorithm [58] is implemented to identify
all nonintersecting local alignments, with a modification to avoid reporting
the trivial alignment of the complete sequence to itself along its entirety.
Features of some autoalignments are found characteristic of tandem repeats:
aligned sequence pairs with overlapping or neighboring coordinates indicate
a tandem repeat with a period equal to the distance between coordinates of
aligned residues. Such autoalignments do not rigorously define the tandem
repeat, but rather highlight the regions of genomic sequences which are strong
candidates for containing tandem repeats, to be analyzed in a subsequent
tandem repeat finding search stage. Candidate regions are selected by
grouping all autoalignments with overlapping coordinates and including
those nonoverlapping autoalignments that are found in close proximity that



3 Tandem Repeats

could be extensions of tandem repeats not captured during the autoalignment
stage.

Each candidate region is further subjected to the tandem repeat search stage,
as follows. A set of words are chosen such that each distinct word is a potential
isolated element of larger tandem repeat. A variation of WDP is used to
align each word against the larger candidate region. This involves perform-
ing the Waterman-Eggert-style alignment using a cyclically addressed word,
capturing all high scoring non-intersecting local alignments. Each word and
alignment, as a unit, is referred to as a Single-Expansion Interpretative Pattern
(SIP). All SIPs found within a candidate region are compared to each other
in a pairwise fashion in order to eliminate redundancy and resolve conflicts
between overlapping SIPs (some SIPs may be found as insignificant versions
of larger SIPs). Remaining SIPs are reported as tandem repeat tracts with the
triggering word as the consensus for the tandemly repeated element. STRING
is limited to finding tandem repeats of unit length smaller than 100 bp.

3.3 MREPS

A distinguishing feature of the newer MREPS program is its ability to find
tandem repeats of any length, from microsatellites to large tandem segmental
genome duplications [30]. At the heart of MREPS is a very efficient combina-
torial algorithm based on advanced string processing techniques, which finds
approximate tandem repeats, also called k-mismatch repeats, running in linear
time O(nklog(k) + S) for a sequence of length n containing S repeats with
at most k mismatches per tandem repeat copy. MREPS finds all k-mismatch
repeats for values of k up to a user-specified maximal resolution parameter,
enabling the program it to find highly divergent repeats. Additional pro-
cessing time is spent refining the results of this search to report biologically
meaningful repeats, coping with artifacts resulting from the algorithmic def-
inition of k-mismatch repeats and consolidating redundant repeats found at
different k-mismatch runs, as described below.

The mathematical definition of the k-mismatch repeat requires that the
repeat be maximal. For this purpose, mismatches are sometimes added to
the repeat boundaries, extending the repeat length to enforce the maximal
k-mismatch repeat definition. MREPS attempts to identify these unwanted
extensions and trim them from the repeat termini, retaining the more mean-
ingful and longer core of the repeat.

Another postprocessing step consolidates redundancy among repeats and
computes their optimal period value. The same region of genomic sequence
can be reported as having tandem repeat sequences with different periods. For
example, a tandem repeat with period of 2 may also be reported with periods
that are multiples of 2. Each period may be associated with a different degree
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of degeneracy, based on the k-mismatch limit for reporting the repeat. The
optimal period for the repeat is chosen as that which minimizes the number
of mismatches between tandem copies with period p.

This is done for every period from 1 to p and the period with minimum
error rate is reported. After computing the optimal period, repeats with the
same period and overlapping by at least two periods are merged together to
form a single repeat. By doing this, repeats originally found as k-mismatch
repeats are redefined in a more satisfying way.

The tandem repeats found as a result of this process are filtered to retain
only those that are considered to be statistically significant. In this case, the
statistically significant repeats are those that are unlikely to be found within
random sequences. Empirical thresholds for minimum length and maximum
error rates were determined for various resolution parameters using shuffled
genomic sequences, and these thresholds are applied to the collection of
repeats to remove insignificant entries.

4 Repeats and Genome Assembly Algorithms

Genome assembly is perhaps the computationally most demanding task in ge-
nomics, requiring days or weeks of computation time for the largest genomes,
even on the latest vintage computers. The assembly problem itself is simple
enough to state: given a collection of input sequences, compute how these
sequences overlap one another and use these overlaps to reconstruct the
original chromosomes. A large mammalian genome assembly generated from
a WGS sequencing project might include over 20 million input sequences
of approximately 800 bp in length. Most of the sequences are generated in
pairs, by sequencing both ends of a larger DNA fragment; these fragments
are grouped into “libraries” with a characteristic fragment size. The assembly
algorithm must keep track of those sizes in order to place the sequence pairs
(or “mates”) approximately the right distance apart in the final assembly.
A thorough account of the computational assembly of genomes is given in
Chapter 2.

Repetitive sequences make genome sequence assembly hard; without re-
peats, almost any algorithm can correctly assembly a genome. This follows
from the fact that without repeats, any overlapping sequence shared by two
or more individual sequence “reads” clearly implies that the reads came from
the same chromosomal location and can be assembled together. As repeats
are so central to the assembly problem, much effort has been dedicated within
large-scale assembly systems to the repeat identification problem.

Assembly systems are only looking for repeats that will confuse them,
which are a subclass of all repeats. First of all, assembly algorithms must
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compare large numbers of reads (as many as 30 million) looking for over-
laps. The fundamental goal of assembly from a WGS sequencing project is to
unify overlapping reads if they originated from the same place on the same
chromosome. Consequently, the reads should be identical up to the limits of
sequencing error. Thus, assemblers look for shared sequences that are nearly
identical — a typical threshold is to require that two reads must overlap by at
least 40 bp and the overlapping region must be at least 98% identical. This
leads naturally to the observation that any pair of repetitive sequences that is
less than 98% identical will not cause any serious problems for assembly. Such
divergent repeats can be sorted out and placed into the correct locations in the
genome. Of course, this is a somewhat simplistic view; e.g. it is often the case
that short regions in the middle of long repeats are identical — and therefore
confusing — even if the entire repeat is not.

Second, any repeat that is contained entirely within a sequencing read
does not cause a problem, because the unique sequence flanking the repeat
will allow the read to be placed correctly in the genome assembly. Current
sequencing technology generates reads of 800 bp or longer; therefore a repeat
region that spans less than 800 bp rarely presents a problem. Note that the
phrase “repeat region” here refers both to single-copy repeats and to tandem
repeats. If a repeat occurs in 20-bp units, but those units occur in tandem
arrays spanning 100 copies, then the repeat region spans 2000 bp and is
definitely a problem for assembly, even though the repeat unit itself is quite
short.

Thus, it should be clear that assembly algorithms must identify sequence
reads that are comprised entirely of repetitive sequence, and they must handle
these repeat reads differently. For the sake of discussion, we will describe
how they are handled in the Celera Assembler [38], although many of these
strategies are similar to those employed by Arachne [5,25] and other current
assemblers. (Note that the Celera Assembler is now open source and includes
many enhancements not described in the original paper; the code is available
at http:/ /sourceforge.net/projects/wgs-assembler.)

4.1 Repeat Management in the Celera Assembler and other Assemblers

There are two main tasks in repeat processing for assembly: (i) one must
identify repeats and (ii) one must attempt to place them in the assembled
genome. We will discuss these two issues in order.

4.2 Repeat Identification by k-mer Counts

The first major computation in most assembly algorithms is the overlap step,
in which all reads must be compared to all other reads. In order to com-
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pute this essentially quadratic operation efficiently, most assemblers employ
a hashing strategy: they create a hash table and record in it all k-mers of a
certain length. Each k-mer entry stores the read identifier and the position
within that read where the k-mer occurred. Typical values of k are 22 (used in
the TIGR Assembler [55] and Celera Assembler) and 24 (used in the Arachne
assembler); this is long enough that in a random DNA sequence, the vast
majority of k-mers will not occur at all.

The k-mer hash array provides a simple and natural vehicle for identifying
repeats. Recall that we want to identify sequence reads that are entirely
repetitive; i.e. satisfying the condition that no unique sequence can be found
within the read. After scanning all reads for all k-mers, it is a trivial matter to
note the average depth of coverage by computing the mean number of entries
for each k-mer in the table. Based on this value, one can determine a threshold
above which a k-mer can safely be assumed to be repetitive, e.g. 3 times the
mean. The Celera Assembler then scans the reads a second time and for each
read looks at the counts of each k-mer in the read. If all k-mers in a read have
a count above the threshold for repeats, then the read itself is labeled as a
repeat. Arachne takes a slightly different approach, eliminating all k-mers that
are overrepresented so that they will not be used in the overlap calculation.

4.3 Repeat Identification by Depth of Coverage (Arrival Rates)

A second method for identifying repeats occurs later during the assembly
process, after at least one round of contig creation. Once the assembler has
a set of contigs built, it can ask whether entire contigs are repetitive. The
simplest method here is based on coverage: for a genome covered at, for
example, 8 times coverage, any contig with significantly deeper coverage is
highly likely to be repetitive. As the average coverage is easy to compute,
it is also easy to detect any contigs whose coverage is 2 or 3 times normal.
However, such a simple approach fails to account for the fact that, statistically,
alonger contig is likely to have coverage closer to the mean than a short contig.
For example, in an 8 times assembly, a long contig with 15 times coverage is far
more likely to represent a repeat than is a short contig with the same coverage.

The Celera Assembler models the expected coverage of a contig using an
“arrival rate” statistic. The idea is the following: assuming that the WGS reads
are generated by a uniform random process that samples every location in the
genome equally, then the reads should “arrive” at a contig (i.e. they should
align to it) at a rate that can be modeled as a Poisson process. This arrival
rate statistic is computed as follows [38]. Suppose that the genome size is
G, the sequencing project generated F reads and we are examining a contig
containing k of those reads. Consider the positions where all k reads begin in
the contig; these are the arrival locations. If the contig occurs just once in the



4 Repeats and Genome Assembly Algorithms

genome, then we should have sampled it at the same rate as any other interval
on the genome; in this case, if we look at the region of length r between the first
and last arrival locations, then the probability of seeing k — 1 arrivals in that
interval is [(rE/G)K/k!]e(~"E/C)_ If the contig occurs twice in the genome (and
therefore we expect twice the arrival rate) then the probability of seeing k — 1
arrivals is [(2rF/G)* /k!]e(=2"F/G) The “ A statistic” in the Celera Assembler is
computed as the log ratio of these two probabilities; i.e. A = (log e)rF/G — (log
2)k. In simple terms, this statistic computes whether a contig is more likely to
occur once than twice in the genome. By adjusting this single parameter, the
assembler can be more or less cautious about what it considers a repeat.

4.4 Repeat Identification by Conflicting Links

A third way of identifying repeats is to notice that a contig has two or more
adjacent contigs according to mate-pair information. If a repeat occurs at
multiple distinct locations (i.e. not in tandem), then the paired sequences that
align to the repeat will have mates (links) that point to different loci. This can
be recognized relatively easily during the scaffolding stage of assembly.

4.5 Repeat Placement: Rocks and Stones

Once a repeat has been identified, the assembler must decide what to do with
it. A number of assemblers, including Celera Assembler, first assemble the
obviously nonrepetitive sequences and then try to place the repeats. One
strategy for doing this in Celera Assembler is called the “rocks and stones”
approach. The idea is to first build scaffolds from the unique sequences,
linking contigs together only if at least two mate-pairs (i.e. the pair of se-
quences that comes from opposite ends of a single DNA fragment) agree on
the linkage. Rocks and stones are repetitive contigs (based on the A statistic)
that are “thrown” into these gaps if mate-pair links indicate they belong there;
rocks must have at least two links and stones only need one. The assembler
then attempts to join the flanking contigs together by finding a tiling of reads
across the contigs and the newly placed stones. Note that one weakness of this
approach is that it is sometimes difficult to determine whether one or multiple
copies of a stone belong in a gap and it is possible that the wrong number of
copies of a tandem repeat will end up in the assembly.

4.6 Repeat Placement: Surrogates
One final issue surrounding repeats in an assembly is the precise mapping of

the reads to the final consensus sequence. Even if the consensus sequence,
i.e. the genome sequence that ends up being deposited in public archives, is
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correct, it may be impossible to determine exactly which sequences belong
to particular regions of the genome. For regions that are 100% identical and
that are longer than a single read, multiple reads can be mapped to multiple
distinct genomic locations and it may simply be impossible to tell where each
read goes, since all the repetitive reads can go in each copy of the repeat.
The Celera Assembler algorithm handles this problem through the use of
“surrogate” contigs: the reads are assembled into a contig which is labeled as
a surrogate, meaning that it apparently occurs more than once in the genome.
This surrogate can then be placed in multiple locations in the genome based
on mate pairs and on reads that span the repeat boundary. However, internal
reads cannot be mapped to the genome, so the final consensus assembly points
only to the surrogate, but not to the multi-alignment of all the reads. An
alternative strategy, used in Arachne, is to place the reads multiply, allowing
them to occur at two or more locations in the genome. Neither solution is
entirely satisfactory, but in both cases the genome assembly can be constructed
correctly.

4.7 Repeat Resolution in Euler

A different approach to repeat identification is taken by the Euler assembler
[45]. In this unusual assembly algorithm, the normal overlap computation is
handled quite differently from the hash table approach of Celera Assembler
and Arachne. Instead, an overlap graph is created in which nodes represent
overlap and edges represent k-mers. Contigs can be created by finding an
Eulerian path through such a graph, called a de Bruijn graph, a problem that
can be solved in linear time. (A Eulerian path through a graph is a path that
uses each edge in the graph exactly once, here meaning that each overlap
is realized exactly once — from left to right — as it should be in assembling
genomes.) To reconstruct the sequence of the contig, the algorithm follows
the Euler path and “reads off” the k-mers found on each edge in the path.

A fuller description of the Euler assembler is beyond the scope of this
review, but it is worth mentioning how it handles repeats. In the de Bruijn
graph created for the purpose of assembly, repeats appear as edges that
share the same label. These edges can be superposed, yielding a new data
structure (the A-Bruijn graph, see below) in which some nodes have many
edges entering or exiting them. Then repetitive sequences correspond to edges
whose boundaries are at such nodes. A critical aspect of the Euler algorithm is
its error correction: in any large genome project, the small number of sequenc-
ing errors in individual reads can easily be confused with slight variations
between repeat copies. By reducing the error rate, the algorithm can more
easily tell if two near-identical sequences represent two different repeat copies.
Euler takes advantage of the fact that errors tend to be random and, therefore,
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that short k-mers with a very low count probably represent such errors. This
enables the algorithm to identify and correct a large majority of sequencing
errors, and this in turn enables it to separate repeats that are very close to
identical.

Despite all the efforts in Celera Assembler, Arachne, Euler and other as-
semblers, some classes of repeats continue to confound large-scale genome
assembly algorithms. Although this is not widely known or discussed, the
genomes available today in public archives likely contain numerous assembly
errors. The most common errors are collapses of tandem repeats into too
few copies; in addition, gross rearrangements around repeats have also been
discovered (and in some cases corrected). The continuing problems highlight
the fact that more work needs to be done to continue to improve the quality
of “finished” genomes.

5 Untangling the Mosaic Nature of Repeats (The A-Bruijn Graph)

Pavel Pevzner and coworkers introduce a graph data structure, the A-Bruijn
graph, to describe repeated sequences ascertained from pairwise alignments
and to reveal the complex mosaic structure commonly encountered among
related sequences [44]. This A-Bruijn graph has found use in several appli-
cations, including genome fragment assembly, multiple sequence alignment
and de novo repeat finding [44,48]. The graph glues similar sequence regions
together into edges of the graph. When applied to a single genome, the
glued-together edges correspond to repeated sequences, and when applied to
related sequence sets from different genomes, homologous sequence regions
are found glued together. The graph itself provides a compact view of the
related regions among a collection of sequences, in addition to the sequence
regions found to be unique to a single sequence or subset of sequences. Soft-
ware packages implementing the A-Bruijn graph include the ABA multiple
sequence aligner [48], and the de novo repeat-finding program RepeatGluer
[44], which is the focus here.

The A-Bruijn graph is constructed from a set of pairwise alignments. All
genome alignments generated by an alignment program (those tested include
BLAST, PatternHunter and BLAT, among others) are decomposed into the A-
Bruijn graph by “gluing” paired genome regions together as edges in a graph
bounded by nodes, with similar sequences forming a single edge and forking
at a node into separate edges where sequences diverge. After constructing
the graph, edges with a multiplicity greater than one correspond to repeated
regions of sequences. By removing all nonrepetitive sequences from the graph
by discarding all edges with multiplicity of one, the A-Bruijn graph is broken
into sets of connected components termed tangles. The tangles represent
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the repeat elements, specifically the structure of subrepeats that form larger
mosaic repeats. Each complete repeat element found in the genome can be
reconstructed by traversing edges of valid paths in the corresponding tangle,
and the relationships among different mosaic repeats are elucidated by virtue
of their subrepeats found in common.

The identity and structure of each representative repeat element, termed
by Pevzner and coworkers as the “elementary repeat”, is provided by the A-
Bruijn graph as a maximal simple path with multiplicity greater than one.
RepeatGluer generates the repeat graph in a text file format compatible with
graph viewing software (i.e. dotty program of the Graphviz package [17]).
Additionally, the genomic sequences corresponding to each subrepeat are
extracted and a consensus for each is provided in FASTA format. An example
of a repeat graph is shown in Figure 4, highlighting the largest repeat tangle
found in the repeat-rich genome of Deinococcus radiodurans.

6 Repeat Annotation in Genomes

Given the great diversity and functional significance of repetitive sequences,
their annotation in completed genomes is an important task. Annotating
repeats is similar to annotating other features in the genome in that a set
of coordinates is required to delimit the feature location, along with a de-
scription of the biological significance of that feature, if known. The location
of repetitive sequences can be obtained in two different ways or in their
combination. Repeats are mined directly from the genome sequence based on
algorithms that locate repeated sequences based exclusively on the genome
sequence composition; these tools and algorithms were the focus of previous

Figure 4 Largesttangle in the repeat nodes bound the subrepeats that are found
graph for Deinococcus radiodurans as in common between larger repeats. The
constructed by RepeatGluer. Repeat length of the subrepeat and its multiplicity are
consensus sequences yielded for edges specified to the right of the edge identifier.
in this tangle mostly correspond to parts Only edges with multiplicity above 1 are

of transposons (often called “insertion shown. As repeats on the forward strand
sequences” in bacterial genomics). The can be merged into single edges with
coding sequence for the transposase of repeats on the reverse strand, the graph
one transposon (annotated gene identifier is constructed using both strands as if
DRB0020, gi10957398) is shown threaded they were independent sequences, which
through the graph with wide edges. This yields symmetry in the resulting graph; the
graph was illustrated using graphviz. Unique transposase coding sequence described
identifiers are assigned to each node and above is highlighted on only one side of the

edge. Edges correspond to subrepeats and symmetric graph.
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discussions. Alternatively, repeats can be identified based on homology to
entries in a preexisting library of known repeat sequences.

The advantage of the former method is that no prior knowledge is required.
Any newly sequence genome can be applied to the earlier described de novo
repeat finding methods to rapidly identify the repeats. These are considered
de novo methods simply because repeats are found based on an analysis of the
genome sequence alone, without prior knowledge of the location or sequence
composition of the repeats. The disadvantage is that other than knowing that
a sequence is a repeat, we do not know what the repeat sequence represents
biologically (i.e. gene, transposon, satellite, segmental duplication).

The latter method, based on repeat libraries, is currently the most widely
used and most trusted method for annotating repeat sequences. Entries of
repeat libraries are typically well annotated with some indication of function
when functional information is known, and homology found to a known
repeat reveals both its location and identity. Both software and repeat libraries
are available as resources for genome annotation. Repbase began as a col-
lection of human representative repeat sequences and fragments, and grew
into a large collection of repeats from a variety of (mostly) model organisms,
now known as Repbase Update [27]. Repbase Update includes separate repeat
libraries for primates, rodents, zebrafish, C. elegans, Drosophila and Arabidopsis,
with prototype sequences that correspond to consensus of large families and
subfamilies of repeats. A “Simple” library, which can be applied to any
genome, provides entries that help identify low complexity microsatellite
sequences.

The program originally used to search genome sequences against Repbase
libraries is CENSOR [28]. Due to the growing data volume in the libraries and
the need for faster searching programs, CENSOR was eventually replaced by
the more efficient alignment program RepeatMasker [53]. RepeatMasker iden-
tifies regions of homology to Repbase entries using Phil Green’s cross_match
algorithm  (http://www.genome.washington.edu/UWGC/analysistools/
Swat.cfm) and then replaces these homologous regions in the genomic se-
quence with “N” characters, effectively masking them in the genome se-
quence. A further 30-fold speed increase is obtained by using WU-BLAST
in place of cross_match, as implemented by MaskerAid [6] as an enhance-
ment to RepeatMasker. By masking the sequence, these repeat regions are
precluded from subsequent sequence analyses in a larger annotation pipeline;
hidden from gene finding programs, and transcript and protein homology
searches, focusing subsequent analyses on the remaining unique sequence.
For perspective, almost half of the human genome is masked due to the repeat
content and this step is incredibly important when trying to find components
of genes that remain hidden in the unmasked nonrepetitive regions.
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The disadvantage with the repeat library-based scanning method is that
comprehensive repeat libraries are available only for those organisms that
have been well studied, and have attained the status of model organisms.
Repbase is a tremendous resource for repeat annotation when corresponding
repeat libraries are available, but it is of limited utility for many organisms
whose genomes are currently being sequenced because of the limits of homol-
ogy detection at the level of the nucleotide sequence coupled with the rate
of divergence within repeats across evolutionary boundaries. Independent
efforts are sometimes necessary to generate comprehensive repeat libraries to
supplement that offered by Repbase [39].

A use of de novo repeat-finding programs is to automate the generation of
repeat libraries that can be used with RepeatMasker. RepeatScout, in particu-
lar, yields consensus sequences for repeat families that are to be subsequently
searched against the genome using RepeatMasker to identify locations of
individual members of the family. Care must be taken with this approach
if the repeats are to be masked from the genomic sequence and hidden from
subsequent analyses. The Repbase libraries include many transposable ele-
ments and other repeat features which are excluded from the host gene set,
and so masking homologous features from the genome should not interfere
with subsequent efforts to find genes. The output from de novo repeat finding
tools contains transposable elements but may also include repetitive features
such as members of large gene families, and by blindly masking these “repeat”
features from the genome, important features will be inadvertently disguised.
None of the de novo repeat-finding programs directly address the problem
of deducing the biological significance of the repeats that are found com-
putationally. This is a difficult problem, currently left to the biologists and
bioinformaticians, and examined on a case-by-case basis.

Searching for occurrences of repeats using representative repeat sequences
or consensus sequences is limited by the information provided by that single
sequence. By searching with profile representations of repeat families, the
sensitivity of a search can be improved; a study by Juretic and coworkers
demonstrates improved sensitivity in the detection of transposable elements
in Rice by using hidden Markov model (HMM) profiles created for known
transposable element families [26]. Although this methodology or similar
profile methods are popular for finding members of protein families or occur-
rences of protein domains, HMM profiles for repeats are not currently widely
employed, but do show great promise for repeat detection and analysis, and
should be considered along with the existing alternatives.
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Repeat Finding Tools and Resources

Miropeats and http://www.littlest.co.uk/software/bioinf/index

ICAtools

mreps http:/ /mreps.loria.fr

PILER http:/ /www.drive5.com/piler

RECON http:/ /www.genetics.wustl.edu/eddy/recon

Repbase Update http:/ /www.girinst.org/Repbase_Update

RepeatFinder http:/ /www.tigr.org/software

RepeatGluer http:/ /nbcr.sdsc.edu/euler/intro_tmp

RepeatMasker http:/ /www.repeatmasker.org

RepeatScout http:/ /www-cse.ucsd.edu/groups/bioinformatics/
software

REPuter http:/ /bibiserv.techfak.uni-
bielefeld.de/reputer

STRING http:/ /www.caspur.it/ ~castri/STRING/
index.htm.old

Tandem Repeat http:/ /tandem.bu.edu/trf/trf

Finder
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Analyzing Genome Rearrangements
Guillaume Bourque

1 Introduction

The study of comparative maps and the rearrangements they evidence was
pioneered in the late 1910s at the Morgan Drosophila lab [45,74]. In the
context of phylogenetics, the analysis of genome rearrangements was first in-
troduced by Dobzhansky and Sturtevant in a study of inversions in Drosophila
pseudoobscura [22]. What followed was a succession of developments in the
fields of comparative mapping and comparative genomics. In particular,
breakthroughs in mapping and sequencing afforded genome-wide analyses of
gene order in various sets of genomes [3,12,20,27,51,53, 54, 63]. Recently, the
considerable investments in large sequencing projects have made accessible
detailed sequences and maps for many eukaryotic genomes [26,32,37,79, 84].
One of the stated purpose of these endeavors is to further our understanding
of these species through comparative analyses [50]. The availability of these
large genomes leads to great opportunities, but also challenges, in the study
of genome rearrangements.

The exploration of large-scale events shaping whole-genome architecture
provides a complementary perspective on the evolution of these organisms
as compared to more traditional molecular studies focused on the analysis of
individual genes. In fact, rearrangement studies allow detailed reconstruc-
tions of evolutionary scenarios, including ancestral reconstructions of entire
eukaryotic genomes [13, 14]. Furthermore, such analyses can lead to the
identification of regions of genomic instability (high rates of rearrangements,
breakpoint reuse, etc.) that challenge and help refine our understanding of
the dynamics of chromosome evolution [46,57]. A related problem, also as-
sociated with genomic instability, is the study of cancer. Rearrangements in a
tumor genome can be analyzed very much as if the tumor was a new organism
that had recently diverged from the normal human genome. The interest is
that although cancer progression is frequently associated with genome rear-
rangements, the forces behind these alterations are still poorly understood.
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This chapter is organized as follows. Section 2 presents some of the basic
concepts required for the analysis of genome rearrangements such as how
the genomes are modeled and what types of rearrangements are considered.
Section 3 presents three criteria that can be used to compute the distance be-
tween a pair of genomes: the breakpoint distance, the rearrangement distance
and the conservation distance. Section 4 shows how the same criteria can be
use to infer phylogenies when multiple genomes are considered using three
different approaches: distance-based, maximum parsimony and maximum
likelihood. Section 5 presents a few recent applications of analysis of genome
rearrangements in large genomes and also recent work studying genome
rearrangements in cancer. Finally, Section 6 concludes with some remarks on
important challenges and promising new developments for the comparative
analyses of gene order.

2 Basic Concepts
2.1 Genome Representation

Initially, the focus of genome rearrangement studies was on the comparative
analyses of small genomes such as mitochondria [12,53, 54, 63], chloroplasts
[20,51,54], viruses [27] and small region of larger genomes [3]. In this context,
the relative order of homologous genes in different organisms was used to
infer phylogenetic relationships and even rearrangement scenarios. An ex-
ample showing differences between the order of homologous genes in two
mitochondria is given in Figure 1.

COox1

ND2

ND1
ND1 ATP8
COX3

ND2
NDé6

ND3 CYTB

COX1

ND4 ‘ND4L
ND3 cox2
ATPS ND5
coxs, o N4 NDAL
Human mtDNA Earthworm mtDNA

Figure 1 Coding genes on the human and on the earthworm
mitochondrial DNA (mtDNA). The list of genes is the same, but their
order differs. For instance, ND1 and ND2 are adjacent in Human

but they are seperated by ND3 in the earthworm. tRNA genes have
been left out of this figure to simplify the example. GenBank accession
numbers: NC_001807 and NC_001673.
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For this purpose, the relative gene order of different genomes can be en-
capsulated into a set of signed permutations. One of the genomes is identified
as the reference genome and is associated to the identity permutation where
each integer corresponds to one of its genes. The permutation associated to
each other genome can directly be obtained from the order of appearance
of the homologous genes. Furthermore, a sign corresponding to the relative
orientation (strand) of the gene, as compared to the reference genome, is given
to each integer of the new permutation. To continue with the example shown
in Figure 1, if the mtDNA is selected as the reference genome, and we label
the genes starting with COX1 in Human as “1” and going clockwise until
ND2 is assigned “13”, we obtain the permutations shown in Table 1. Of all
the genes in the two mtDNAs, only ND6 in Human was on the reverse DNA
strand, which is why it is represented by “—10” in Earthworm as its relative
orientation is reversed.

Table 1 Signed permutations associated with the two mitochondria genomes shown in
Figure 1

Human 1 2 3 4 5 6 7 8 9 10 11 12 13
Earthworm 1 2 3 5 -10 11 4 9 7 8 12 6 13

This genome representation can be adapted and generalized for data sets
with other distinctive features such as multiple chromosomes, unsigned gene
orders, unequal gene content and different source of homology markers. We
briefly present these variants.

2.1.1 Circular, Linear and Multichromosomal Genomes

A genome can consist of a single chromosome or a collection of chromo-
somes and is called unichromosomal or multichromosomal accordingly. There
are two types of chromosomes: circular and linear. The mitochondria shown
in Figure 1 are circular genomes. Linear chromosomes have two separated
endpoints. Unless otherwise stated, multichromosomal genomes will be as-
sumed to have linear chromosomes. The different types of genomes can
also be represented by permutations, but additional markers are required for
multichromosomal genomes to mark the boundaries of the chromosomes.

It is important to specify the type of chromosomes we are considering
because they will lead to different equivalent representations. For instance,
consider the three genomes:

G = 1 2 3
G, = 2 3 1
Gy = -3 -2 -1
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As circular chromosomes, all three representation are equivalent; however, as
linear chromosomes, only G and G3 correspond to the same representation
(there is usually no distinction between the two end-points of a linear chro-
mosome and so a complete flip leads to an equivalent representation).

2.1.2 Unsigned Genomes

If the orientation of genes in a set of genomes is unknown, the relative gene
order can still be encapsulated into a set of unsigned permutations. Un-
fortunately, many genome-rearrangement problems, such as calculating the
reversal distance, are significantly harder for unsigned permutations [17]
compared to signed permutations (see Section 3.2). For this reason, but also
because the relative orientation is usually obtainable, we will assume that we
are dealing with signed genomes in the rest of this chapter.

2.1.3 Unequal Gene Content

In representing genomes with permutations, we have assumed that a set of
n genes was found with a unique homologous counterpart in all genomes.
In fact, in many cases this assumption will be violated: a genome may have
gained additional genes through rearrangements events such as insertions or
duplications and it may have lost genes following deletions. To encapsulate
the relative gene orders of genomes with unequal gene content we need to
generalize the representation to account for this variable alphabet. Although
models that are not restricted to equal gene content are more complete and
realistic (see Ref. [24] for a review), they are also more challenging algo-
rithmically and have been limited to few applications [23, 66, 69]. We will
focus on genomes with equal gene content in the rest of this chapter except
for the presentation of some rearrangement events affecting gene content in
Section 2.2.

2.1.4 Homology Markers

So far, it was implicit that the signed permutations representing the genomes
were constructed based on the relative position of homologous genes. Ac-
tually, however, any type of marker with an homologous counterpart in all
genomes can be used to construct similar permutations. This is important
because, especially in large eukaryotic genomes (e.g. human, mouse) where
genes only cover a small fraction of the genome, the ability to use markers
extracted from raw DNA sequence allows to study rearrangement events
that occur anywhere in the genome. This will be covered in more detail in
Section 5.1.
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2.2 Types of Genome Rearrangements

During evolution, an assortment of events can modify the genome. These
events are known as mutations and they can occur especially during DNA
replication. Mutations are divided into two major categories: point mutations
and chromosomal mutations. Point mutations are at the single-base level.
Although point mutations can have a significant impact on the genome (e.g.
a base change could be responsible to the insertion of an early stop codon
that completely annihilates a gene), they will not be considered further here
as they mostly affect individual genes. In contrast, chromosomal mutations
affect directly the architecture of genomes by modifying the gene order or
the gene content. There are various types of chromosomal mutations, but the
most common are reversals (or inversions), translocations, fusions, fissions,
transpositions, inverted transpositions, insertions, deletions and duplications.
See Figure 2 for a cartoon example of how reversals and deletions could occur
during DNA replication. Only translocations, fusions and fissions are specific
to multichromosomal genomes. The first six types of chromosomal mutations
rearrange the genes, but they do not modify the set of genes present in a given
genome. Insertions, deletions and duplications, on the other hand, modify
the gene content of a genome by adding, or removing, some genes or by
generating multiple copies of the same gene. The effect of these different
chromosomal mutations are exemplified in Table 2.

Table 2 Examples of chromosomal mutations that impact either gene order
or gene content

Mutation type Before After Impact

Reversal 12(345]6 = 12-5-4-36 geneorder

Translocation 12(345 = 128 gene order
67 67345

Fusion @I = 123456 gene order

59
Fission = 1234 gene order

56
Transposition 1 45 ” 6 = 145236 gene order
Inverted transposition 1 45 |] 6 = 145-3-26 gene order

Insertion 1234 H 56 = 1234756 gene content
Deletion 1 456 = 1456 gene content

Duplication 1234/56 = 12343456  gene content
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a) 1 2 3 4 5 6

Figure 2 (a) DNA fragment with each integer corresponding to a
gene. (b) The same DNA fragment but twisted. During replication,

if the twisted loop is copied, it leads to a reversal and the fragment
becomes 12 —5 —4 —3 6. Note that the sign or the strand of the
genes is modified at the same time as the order. If the twisted loop

is ignored, it results in a deletion and the fragment is transformed into
126.

3 Distance between Two Genomes

In this section, we review different criteria that can be use to measure the
distance between two genomes based on comparative gene order. The first
criterion, the breakpoint distance, counts the number of disruptions of the
relative gene order between a pair of genomes. The second criterion, the
rearrangement distance, relies on the a priori definition of a set of permissible
operations (e.g. only reversals) and then minimizes the number of such
operations required to convert one gene order into the next. The final cri-
terion described is the conservation distance, which, similar to the breakpoint
distance, circumvents the requirement of a rearrangement model. Under this
criterion, the disruption of the relative gene order is measured by the number
of conserved or common intervals.

3.1 Breakpoint Distance

The breakpoint distance [48,85] compares two permutations by directly count-
ing the number of gene order disruptions between two genomes. Formally,
given two signed permutations of size 7, T and v, the first step to compute the
breakpoint distance is to extend both permutations so that they start with 0
andendwithn+1: 1 =0,7, M ... w, n+1landy=0,7;, %, .. .Y, n+ 1. Then,
the breakpoint distance, dyyeqx (T, ), is defined as the number of pairs (v, Y1),
0 < i < n, such that neither the pair (y;,y;,;) nor (—Y;,{, —7;) appears in .
For instance, using the example from Table 1 and setting 7 = human and y =
earthworm, we get dpreak (T, Y) = 9. The nine breakpoints are displayed in 7y
using arrows:

01235 —10 11 4 9 7 8 12 6 13 14
L A N N A [
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Two important strengths of this criterion measuring the degree of similarity
are that (i) it is easily computable in linear time and (ii) it does not require any
assumptions about the underlying rearrangement mechanisms.

3.2 Rearrangement Distance

Given two permutations © and y and a set of permissible rearrangements,
the rearrangement distance, drear(T, Y), is defined as the minimum number of
operations required to convert one permutation into the other. For example,
given that reversals are the only allowed operations, what is the minimum
number of events required to convert the permutation associated with the
earthworm mtDNA into the one associated with the human mtDNA shown in
Table 1? The problem is quite challenging. In this particular case, the answer
is seven and Table 3 shows one such scenario. We will use dyey for the special
case of drear When reversals are the only permissible operations.

The interest in looking for the minimum number of steps is that, under
the assumption that such events are rare (and that our rearrangement model
is correct), we hope to recover the sequence of rearrangements that really
occurred. The caveat is that it is well known that the most parsimonious
scenario underestimates the actual number of operations when this number
is above a threshold of 61, where 7 is the size of the permutation and 6 is in
the range from 1/3 to 2/3 [15, 35, 83].

Table 3 Example of a most parsimonious rearrangement scenario with seven reversals
between earthworm and human mtDNA

Earthworm 1 2 3 5 -—10 11 4 9 7 8 12 6 13
p(6,11) 1 2 3 5 -10 11 4 9 7 8 12 6 13
p(9,12) 1 2 3 5 -10 -12 -8 -7 -9 -4 -11 6 13
p(7,10) 1 2 3 5 —-10 -12 -8 -7 -6 11 4 9 13
p(6,12) 1 2 3 5 -10 -12 -11 6 7 8 4 9 13
p(4,6) 1 2 3 5 -10 -9 -4 -8 -7 -6 1 12 13
p(4,7) 1 2 3 9 10 -5 -4 -8 -7 -6 1 12 13
p(6,10) 1 2 3 4 5 -10 -9 -8 -7 -6 1 12 13

Human 1 2 3 4 5 6 7 8 9 10 1 12 13

Based on different sets of permissible rearrangements, various methods
have been proposed to efficiently compute the rearrangement distance and
sort a pair of genomes. Of all the choices of permissible operations, the
reversal-only model is probably the most extensively studied. The work
was pioneered by Sankoff and Kececioglu [68], but was followed by the
development of increasingly efficient polynomial-time algorithms [1, 8,9, 28,
34]. Other studied sets of permissible operations include transpositions [2,81],
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inversions, translocations, fusions and fissions [29, 52, 75], and more recently
block interchange (a more general type of transposition) [19,41, 86].

In the remainder of this section, we review a methodology that was devel-
oped to compute the distance between a pair of genomes using reversals only
(for unichromosomal genomes) or reversals, translocations, fusions and fis-
sions (for multichromosomal genomes). We will refer to it as the Hannenhalli-
Pevzner (HP) theory. This methodology was developed in Bafna and Pevzner
[4] and in Hannenhalli and Pevzner [30], it was summarized in Pevzner [58],
it was improved in Tesler [75], and, finally, it was implemented in a program
called GRIMM [76].

3.2.1 HP Theory

We first describe the methodology for unichromosomal genomes where re-
versals are the only permissible operations. Assume we have a permutation
Y that we wish to sort with respect to the identity permutation ©. The first
step is to convert v, a signed permutation, into Y, an unsigned permutation,
by mimicking every directed element i by two undirected elements i* and i
representing the tail and the head of i. Since y is a permutation of size n, Y
will be a permutation of size 2n. We now extend the permutation ¥ by adding
Yo = 0and v,,,; = n+ 1. The next step is to construct the breakpoint graph
associated with y. The breakpoint graph of v, G(Y), is an edge-colored graph
with 2n + 2 vertices. Black edges are added between vertices v,; and 7, ; for
0 < i < n. Grey edges are added between i" and (i + 1)t for 0 < i < n,
between 0 and 1, and between n" and n + 1. Black edges correspond to
the actual state of the permutation while grey edges correspond to the sorted
permutation we seek. See Figure 3 for an example.

Bafna and Pevzner [4], and later Hannenhalli and Pevzner [30], showed
that G(y) contains all the necessary information for efficiently sorting the
permutation y. The first step is to look at the maximal cycle decomposition
of the breakpoint graph. Finding the maximal cycle decomposition of a graph
in general can be a very difficult problem; however, fortunately, because of

1t 1h 2t 2h 3t 3h 5t sh j9h 10t 11t 11h 4t 4h 9t gh 7t 7h gt gh 12t 12h gt gh 13t 13h 14

1

2 3 5 -10 11 4 9 7 8 12 6 13

Figure 3 Breakpoint graph associated with the two permutations from
Table 1. Black edges are shown using think lines. All other lines (both

solid and dashed) correspond to grey edges. Dashed lines are used to
show the only nontrivial oriented cycle.
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the way the breakpoint graph was constructed for a signed permutation, each
vertex has degree two and so the problem is trivial. Suppose c(y) is the
maximum number of edge-disjoint alternating cycles in G(y). The cycles are
alternating because, in the breakpoint graph of a signed permutation, each
pair of consecutive edges always has different colors.The important lower
bound:

drev(nr'Y) = d(’Y) >n+1-— C(Y)

was first presented by Kececioglu and Sankoff [35].

A few additional concepts on the breakpoint graph are required to present
the result of Hannenhalli and Pevzner [28]. A grey edge in G(y) is said to be
oriented if it spans an odd number of vertices (when the vertices of G(y) are
arranged in the canonical order ¥, ..., %, ). A cycle is said to be oriented
if it contains at least one oriented grey edge. Cycles which are not oriented
are said to be unoriented unless they are of size 2, in which case they are said
to be trivial. The term “oriented" comes from the fact that if we traverse an
oriented cycle we will traverse at least one black edge from left to right and
one black edge from right to left. In the breakpoint graph shown in Figure 3,
there are only two nontrivial cycles: one where the grey edges are displayed
using solid lines and one where the grey edges are displayed using dashed
lines. The cycle with solid lines is unoriented since it does not contain an
oriented edge but the cycle with dashed lines is oriented because it contains
an oriented edge [e.g. (10", 11)].

For each grey edge in G(y) we will now create a vertex v, in the overlap
graph, O(G(y)). Whenever two grey edges e and €’ overlap or cross in the
canonical representation of G(y), we will connect the corresponding vertices
Ve and vy. A component will mean a connected component in O(G(y)). A
component will be oriented if it contains a vertex v, for which the correspond-
ing grey edge e is oriented. As for cycles, a component which consists of a
single vertex (grey edge) will be said to be trivial. In Figure 3, there are five
trivial components and one larger oriented component since at least one of
its grey edge is oriented. The difficulty in sorting permutations comes from
unoriented components.

Unoriented components can be classified into two categories: hurdles and
protected nonhurdles. A protected nonhurdle is an unoriented component that
separates other unoriented components in G(y) when vertices in G(y) are
placed in canonical order. A hurdle is any unoriented component that is not a
protected nonhurdle. A hurdle is a superhurdle if deleting it would transform
a protected nonhurdle into a hurdle, otherwise it is said to be a simple hurdle.
Finally, yis said to be a fortress if there exists an odd number of hurdles and all
are superhurdles in O(G(y)) [71].
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The main result fromHannenhalli and Pevzner [28] is that:

drev(m,y) =d(y) =n+1—c(y) +h(y) + f(v),

where h(y) is the number of hurdles in v, and f(y) is 1 if y is a fortress and 0
otherwise. However, the machinery to recover an optimal sequence of sorting
reversals was also presented. The fact that the distance between the human
and earthworm is 7 can directly be extracted from this formula and from the
breakpoint graph shown in Figure 3 since there are 13 genes, seven cycles and
no hurdles or fortress.

Finally, Hannenhalli and Pevzner [29] derived a related equation to com-
pute the rearrangement distance between two multichromosomal genomes
when permissible operations are: reversals, translocations, fusions and fis-
sions. We refer the reader to Pevzner [58] and Tesler [75] for the details of the
calculation, but we will briefly present how the formula can be obtained.

The main idea to compute the rearrangement distance between two mul-
tichromosomal genomes IT and I is to concatenate their chromosomes into
two permutations ® and y. The purpose of these concatenated genomes is
that every rearrangement in a multichromosomal genome I' can be mimicked
by a reversal in a permutation y. In an optimal concatenate, sorting y with
respect to 7 actually corresponds to sorting I" with respect to I1. Tesler [75] also
showed that when such an optimal concatenate does not exist, a near-optimal
concatenate exists such that sorting this concatenate mimics sorting the multi-
chromosomal genomes and uses a single extra reversal which corresponds to
a reordering of the chromosomes.

3.3 Conservation Distance

Recently, two criteria were proposed to measure the level of similarity be-
tween sets of genomes: common intervals [31,78] and conserved intervals [7].
In a way, both of these criteria represent a generalization of the breakpoint
distance but consider intervals instead of only adjacencies. There are two
important properties that common/conserved distances share with the break-
point distance:

(i) It can be directly defined on a set of more than two genomes and allows
the identification of shared features in a family of organisms.

(ii) It does not rely on an a priori model of rearrangements.

3.3.1 Common Intervals

Given two signed permutations, © and vy, a common interval is a set of two
or more integers that is an interval in both permutations [31,78]. Using the
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example from Table 1, we get that there are 14 common intervals, eight of
which are shown in the earthworm using boxes:

2] 35 [0 11) 4[5 [ 8]] 12 6 13

The additional common intervals not displayed are: [2,3], [2,3,5,...6],
[2,3,5,...13],[3,5,...6],[3,5,...13] and [5,10,...13].

Suppose C(m,y) and C;(m,y) are the number of common intervals and the
number of common intervals of size i in ® and v, respectively. We note that
the maximum number of common intervals for two permutations of size n is
achieved for identical permutations and is simply:

ici(n,n): (n—1)+(n—2)+...+1:@.

Of course, the more common intervals between two permutations, the
higher the conservation. In the example above, there is only 14 common
intervals while the maximum achievable is 78.

3.3.2 Conserved Intervals

Given two permutations, T and v, a conserved interval is an interval [a, b] such
that a precedes b or —b precedes —a, in both w and v, and the set of elements,
without signs, between a and b is the same in both wand y[7]. Continuing with
the example from Table 1, there are only five conserved intervals between the
human and earthworm mtDNA:

1 [ 3] 5 10 11 4 9 [7 8 12 6 13

Although, initially the definition of conserved intervals may seem unnatu-
ral, it is tightly connected to the HP theory (it corresponds to subpermutations
in Ref. [29]) and it was shown that it can be used to efficiently sort permuta-
tions by reversals [5].

4 Genome Rearrangement Phylogenies

An important challenge in the comparative analysis of gene order is the
construction of phylogenies based on genome rearrangements that describe
the genetic relationships between the organisms. Phylogenies are represented
by unrooted binary trees such that the leaf nodes of the trees correspond to
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contemporary genomes and the internal nodes correspond to their extinct
ancestors (see Figure 5 for an example). Phylogenetic tree reconstruction is
difficult largely because the number of unrooted trees grows at a rate that is
more than exponential with the number of leaf nodes.

We review three main classes of approaches that can be used for phy-
logenetic tree reconstruction based on relative gene order: distance-based
methods, maximum parsimony methods and maximum likelihood methods.
These main classes of approaches are very similar in spirit to the ones devel-
oped for phylogenetic tree reconstruction based on sequence evolution with
point mutations instead of chromosomal mutations (see Chapter 4). Links for
some of the programs available to analyze genome rearrangements described
in this section are provided in Table 4.

Table 4 Links for some of the software tools available to analyze genome rearrangements

BPAnalysis  http:/ /www.cs.washington.edu/homes/blanchem /software
GRAPPA http:/ /www.cs.unm.edu/~moret/ GRAPPA

GOTREE http:/ /www.mcb.mcgill.ca/~bryant/GoTree

GRIMM http:/ /www-cse.ucsd.edu/groups/bioinformatics/ GRIMM
MGR http:/ /www-cse.ucsd.edu/groups/bioinformatics/MGR
BADGER http:/ /badger.duq.edu

4.1 Distance-based Methods

These approaches construct trees strictly based on the pairwise distances
between the leaf nodes of the tree. The first step computes the pairwise
distance matrix for the genomes of interest using one of the criterion described
in Section 3 or from other criterion such as EDE, the “empirically derived
estimator”, that attempts to correct the bias in the parsimony assumption
for large distances [83]. Distance-based methods differ in the second step in
how they make use of the distance matrix to reconstruct the trees. Currently,
the most common family of distance-based methods is probably “neighbor-
joining” which was first proposed by Saitou and Nei [62].

Methods in this class are typically very efficient; in many cases phylogenies
can be inferred in polynomial time. When applied to gene order data, one
of the limitations of distance-based approaches is that they do not label the
internal nodes and they do not associate a rearrangement scenario to the phy-
logeny. For challenging data sets, this may lead to infeasible or less accurate
solutions [82]. This limitation is addressed both by maximum parsimony and
by maximume-likelihood methods.
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4.2 Maximum Parsimony Methods

Methods seeking the most parsimonious scenario attempt to recover the tree,
and its internal nodes, that minimizes the number of events on its branches.
It corresponds to the Steiner Tree Problem [33] on various metrics. The first
methods of this type were developed for sequence data [25] but they were
later adapted for gene order data [27,64]. Formally, given a set of m genomes,
the problem is to find an unrooted tree T, where the m genomes are leaf nodes,
and assign internal ancestral nodes such that D(T) is minimized:

D(T)= }, d(my),

(my)eT

where d(m,7y) can be any of the distances described in Section 3. The special
case of three genomes (m = 3) is called the median problem. Although the
tree topology for this problem is trivial, the assignment of the optimal internal
node can still be challenging.

If a rearrangement distance is used, a detailed rearrangement scenario could
also be associated to the tree that will describe every intermediate step of the
evolution of these genomes. Again, under the assumption that rearrange-
ments events are rare [15, 61], its reasonable to seek the most parsimonious
scenario to recover the actual tree.

Although many of the pairwise distances can be computed in polynomial
time (e.g. the breakpoint distance djpeq and the reversal distance drey, see
Section 3.2), it was shown that both the median problem for d}, . and the
median problem for drey are NP-hard [16,18,55]. Nevertheless, there are a
few efficient heuristics to tackle both the median problem [67,72] and the full
phylogeny problem [10,15,44] under different sets of assumptions. We briefly
present some of these methods.

Sankoff and Blanchette [67] studied the median problem for the breakpoint
distance; they described a clever reduction of this problem to the Traveling
Salesman Problem for which reasonably efficient algorithms are available.
Using this result, Blanchette and coworkers [10] developed BPAnalysis, a
method to recover the most parsimonious scenario for m genomes also under
the breakpoint distance. That method first looked for the optimal assignment
of internal nodes for a given topology by solving a series of median problem
(this is also known as the small parsimony problem). The next step was
to scan the space of all possible tree topologies to find the best tree (large
parsimony problem). One of the drawbacks of this approach is that, as
we have seen, the tree space quickly becomes prohibitive. This limitation
was partially addressed by Moret and coworkers [44] who develop GRAPPA
which improves on BPAnalysis by computing tight bounds and efficiently
pruning the tree space. Another program to reconstruct phylogenies based
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on the breakpoint distance is GOTREE (see Table 4). A special feature of this
last tool is that it is not restricted to genomes with equal gene content.

Siepel and Moret [72] studied a different problem: the median problem for
the reversal distance. They derived a branch-and-bound algorithm to prune
the search space using simple geometric properties of the problem and the
linear-time machinery to compute the reversal distance [1]. Concurrently,
Bourque and Pevzner [15] developed a method called MGR for both the
median and the full phylogeny problem that made use of properties of ad-
ditive or nearly additive trees. This algorithm, combined with GRIMM [76], is
applicable to unichromosomal genomes for the reversal distance and to mul-
tichromosomal genomes for a rearrangement distance that allows reversals,
translocations, fusions and fissions. The main idea of the algorithm is to look
for rearrangements in the starting genomes that reduce the total distance to
the other genomes and iteratively “reverse history". The key is to use good
criterion to chose the order in which the rearrangements are selected.

The first method that used the conservation distance as the criterion to
be minimized in the phylogenetic reconstruction problem was presented by
Bergeron and coworkers [6]. Even though the problem was restricted to find-
ing an assignment of internal nodes on a fixed phylogeny (small parsimony
problem), this is a promising and active area of research.

4.3 Maximum Likelihood Methods

If we make assumptions about the mechanisms of evolution and the rates
at which these changes occur, we can seek the tree which is the most likely
to have generated the data observed. Such methods are called maximum
likelihood methods. They tend to be computationally intensive but they have
the advantage of providing a global picture of the solution space in contrast
to maximum parsimony which provides a unique solution for instance.

In the context of the comparative analysis of gene order, a maximum like-
lihood approach turns out to be quite challenging because of our incomplete
understanding of the frequency of rearrangement events but mostly because
of the significantly large number of potential states at internal nodes and of
phylogenetic trees [70]. Nevertheless, Dicks [21] developed one such method
for gene order data, but the method presented was restricted to small instances
of the problem. Other promising approaches involve the construction of a
Bayesian framework and the use of Markov chain Monte Carlo to sample
parameter space for two unichromosomal genomes [42, 87] or m unichromo-
somal genomes [38, 39]. Specifically, Larget and coworkers [39] developed
the program BADGER and used it to quantify the uncertainty among the
relationships of metazoan phyla on the basis of mitochondrial gene orders.
So far, although these frameworks are propitious, their range of applications
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has been limited. It will be interesting to see if these approaches can be further
applied and adapted to larger and also multichromosomal genomes.

5 Recent Applications

We have already seen some applications in which genome rearrangements
acted as complementary phylogenetic characters to study evolutionary rela-
tionships in a group of organisms such as mitochondria, chloroplasts, viruses
or small regions of larger genomes [3,12,20,27,51, 53,54, 63]. We will now
show how the same concepts and methodologies can be applied to com-
pare entire eukaryotic genomes. Apart from the topology of the phylogeny,
interesting questions arise from studying rates of rearrangements, types of
rearrangements and predictions at ancestral nodes. We will also present some
preliminary work studying genome rearrangements in cancer.

5.1 Rearrangements in Large Genomes

Genome rearrangements studies have traditionally been based on the relative
order of homologous genes; however, as hinted at in Section 2.1, they can
also be based on the relative order of a common set of homology synteny
blocks (HSBs). These blocks can be defined either directly from sequence
similarity [36,56] or from the clustering of homologous genes [88]. In this
context, rearrangement studies for large genomes will be reconfigured into a
two-step process:

(i) Identification of HSBs shared by the set of genomes under study:.
(ii) Genome rearrangement analysis of the HSBs.

In Step (i), both for sequence-based and gene-based HSBs, thresholds need
to be set to allow the HSBs to extend over minor local inconsistencies that
could stem from different sources: sequencing and assembly errors, small
rearrangement events not enclosed in the rearrangement model of Step (ii)
(e.g. transposons), inaccurate prediction of orthologous genes (e.g. in the
presence of many paralogous copies), etc. For the identification of HSBs, there
are advantages to using both sequence and gene data.

The most important benefit of using raw sequence data is probably to cir-
cumvent the limitation of analyzing strictly coding regions (these regions only
cover a small portion of the eukaryotic genomes). Other benefits include that
it avoids annotation problems, it is less sensitive to gene families and, finally,
it preserves additional information on micro-rearrangements (rearrangements
within HSBs) that can then be used as additional independent phylogenetic
characters [13]. Advantages of using gene-based HSBs are that it focuses
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the investigations on critical regions of the genome, the thresholds are length
independent and it avoids some of the noise created by repeat regions.

After Step (i), the comparison of the respective arrangements of the HSBs in
the different genomes can be performed using the models, algorithms and
programs described in Sections 3 and 4. This two-step analysis was used
to compare the human with the mouse genome [56] and suggested a larger
number inversions than previously expected [48]. It also helped motivate
a model for chromosome evolution in which some breakpoints are reused
nonrandomly [40,57].

When many genomes are compared, rearrangement analysis provides in-
formation not only on phylogenetic relationships, but also on rates of re-
arrangements and on putative genomic architecture of ancestral genomes
[13,14,46,47]. For instance, the availability of the rat genome [26] allowed
a comparative study with the human and the mouse [14] that confirmed an
observation made using lower-resolution studies that rodent genomes have
had an accelerated rate of inter-chromosomal rearrangements (e.g. transloca-
tions, fusions and fissions). The same study also conjectured on the genomic
architecture of the putative murid rodent ancestor. The addition of the chicken
genome [32] acting as an outgroup allowed us to look further back in time
and predict the potential architecture of the mammalian ancestor [13]. This
analysis also suggested:

e Variable rates of inter-chromosomal rearrangements across lineages.

e High ratio of intra-chromosomal versus inter-chromosomal rearrangements
in the chicken lineage.

e Low rate of rearrangements in chicken, in the early mammalian ancestor or
in both.

More recently, a comprehensive analysis of eight mammalian genomes,
three sequenced genomes (human—-mouse-rat) and five with high-resolution

Figure 4 Inferred genomic architecture of
the mammalian ancestor (adapted from

Ref. [46]). Each human chromosome is
assigned a unique color and is divided into
HSBs. These HSBs correspond to stretches
of DNA for which sufficient similarity has
been retain to unambiguously allow the
identification of the homologous regions in

left (p-arm) to right (g-arm) and physical
gaps between blocks are shown to give

an indication of coverage. Numbers above
the rec onstructed ancestral chromosomes
indicate the human chromosome homolog.
Diagonal lines within each block indicate their
relative order and orientation. Black arrows
under the ancestral chromosome indicate

all other species. The size of each block

is approximately proportional to the actual
size of the block in human. In human, blocks
are arranged on each chromosome from

that the two adjacent HSBs separated by the
arrow were not found in every one of the most
parsimonious solutions explored; these are
considered weak adjacencies.
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radiation-hybrid maps (cat-dog—cow—pig—horse), afforded a detailed analysis
of the dynamics of mammalian chromosome evolution [46]. This study also
produced a refined model of the genomic architecture of the mammalian
ancestor, see Figure 4.

Applications focusing on specific areas of the genomes allow for the identi-
fication of very detailed scenarios. For instance, in the results of the study by
Murphy and coworkers [46], it is possible to focus exclusively on the HSBs
found on human chromosome 17; there are 14 such blocks. Chromosome
17 is interesting because, similarly to the X chromosome, it has seldom ex-
changed genetic material with other chromosomes during mammalian evolu-
tion. Specifically, the 14 blocks are found in one contiguous segment on a sin-
gle chromosome in mouse, rat, cat and pig. They are found in two contiguous
pieces on two chromosomes in cow and in three contiguous pieces on three
chromosomes in dog (horse is left out of this analysis because of insufficient
data). See Figure 5 for a parsimonious rearrangement scenario describing
the mammalian history of this chromosome. This example once again seems
to point towards uneven rates of rearrangements with no rearrangement
between the cetartiodactyl ancestor and pig, but five rearrangements in cow
during the same period of evolution. According to this reconstruction, the
pig chromosome 12 (the homolog of human chromosome 17) is ancestral
in the sense that no large-scale rearrangement has occurred on it since the
divergence of these species.

5.2 Genomes Rearrrangements and Cancer

The previous section described examples of the use of genome rearrange-
ments to study the evolution of a group of organisms. Now, because a rapid
increase of chromosomal mutations is frequently observed in cancer cells, it is
possible to study the cancer genome very much like as it was a new organism
that had recently diverged from the normal human genome. The interest
is that although cancer progression is frequently associated with genome
rearrangements, the mechanisms behind these rearrangements are still poorly
understood. There are many challenges in studying rearrangements in cancer
cells: the heterogeneity of the cells, the complexity of the rearrangements
(which include translocations, but also frequent duplications), but mostly
the fact that detailed sequence is only sparsely available. So far, the cost
of sequencing has been a prohibitive factor preventing large cancer genome
sequencing projects, but new emerging sequencing techniques such as End
Sequence Profiling [80] and Ditags [49] might help alleviate this problem.
Such techniques justify the development of algorithms and tools, related to
the analysis of genome rearrangement, to extract detailed tumor architecture
from such data sets [59, 60].
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Figure 5 Mammalian history of human (g-arm) and physical gaps between blocks
chromosome 17. The arrangements of are shown to give an indication of coverage.
14 blocks (stretches of DNA) from human In other species, the same blocks are drawn
chromosome 17 with syntenic counterparts also from left to right but in some cases these
in seven other mammalian genomes (mouse,  blocks are found on multiple chromosomes
rat, cat, dog, pig and cattle) are shown at [cattle (2), dog (3) and carnivore ancestor
the bottom of the tree. Blocks are drawn (2)]. Crosses on the edges of the tree are
proportionally to their size in human. A labeled and indicate putative rearrangement
diagonal line traverses the blocks to show events even though their exact timing is

their order and relative orientation. In human,  unknown. Data adapted from Ref. [46].
blocks are arranged from left (p-arm) to right

A complementary approach for the study of rearrangements in cancer in-
volves looking at breakpoint regions. Many such regions have already been
characterized in a large population of cancer patients [43]. Studying their
distribution with respect to either chromosomal location [65] or evolutionary
breakpoints [46] (identified from multispecies comparisons) is likely to pro-
vide invaluable information on the forces acting on these aberrant genomes.

6 Conclusion

6.1 Challenges

Comparative analyses of gene order would greatly benefit from established
benchmarking data sets. These instances could be use to compare and refine
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current approaches for the study of genome rearrangements. Of course,
the challenge is that for data sets generated from real genomes, the actual
rearrangement history for these organisms is unknown. Thus, recovered
scenarios can only be evaluated with respect to some limited aspects of their
solution such as topology of the recovered tree [12,20]. This is a suitable
criterion to evaluate the merits of an approach because the topology can also
be inferred from alternative, more traditional, approaches such as the compar-
ison of individual genes. Even then, ambiguities will remain since for many
interesting sets of species, some aspects of the topology are debatable (e.g.
especially when deep branches are involved) and the information extracted
from genome rearrangements might be different from that provided from
sequence analysis but not necessarily erroneous.

Other criteria that can be used for the evaluation of solutions are some of
the coarse features of the recovered ancestors such as the ancestral chromo-
somal associations. These are associations between modern chromosomes
(e.g. human chromsomome) that are inferred to have been present in the
ancestors [73]. Unfortunately, once again, definitive evaluation is difficult for
two reasons: (i) the expected associations rely on low-density comparative
maps and are likely to be incomplete, and (ii) multiple alternative ances-
tors are typically recovered in rearrangement studies making more than a
single prediction [13,14]. Now that high-quality sequences are increasingly
becoming available for many genomes, one would actually expect to see the
knowledge on such associations to be expanded and refined, especially after
carrying out combinatorial analyses that take into account more than just co-
occurrences.

A logical alternative to real benchmarking data sets with unknown rear-
rangement history is provided by simulated data sets. Unfortunately, there are
drawbacks inherent to this approach as well. In particular, simulated data sets
will always bias the evaluation towards approaches that have an underlying
rearrangement model that is most compatible with the model that was used to
generate the data. Such data sets can be a great asset in evaluating alternative
methods that have the same assumptions, but they are of limited value in
identifying whether a particular method will be successful on real data.

Another desired development would be a more systematic study and com-
parison of different distance criterion. Specifically, with the development of
new measures [7,31,78], a detailed analysis of the strengths and weaknesses of
the different approaches is needed to assess the context in which they are most
applicable. For instance, model-free measures such as the breakpoint distance
and the conservation distance are probably the most appropriate when the
underlying rearrangements follow uncharacterized rules.

Finally, a key challenge associated with this type of analysis involves study-
ing the causes and consequences of genome rearrangements. Although these
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events are well characterize in both evolution and cancer, the extent of the
biological repercussions is still unclear. For instance, large rearrangement
events can have a significant impact at the population level by creating sub-
populations for which recombination in the affected region will be impossible
but the question of whether such events also play a role in speciation for
instance is still debated. On a different topic, is there a faster phenotypic
evolution associated with a faster rearrangement rate? Given the amount of
comparative data recently made available [26,32,37,79, 84], the hope is that
some answers might be within reach.

In order to start exploring these questions, looking at sets of highly diverse
genomes spanning long evolutionary distances is not the most appropriate.
Inherent to such data sets will always be ambiguities such as the accuracy of
the rearrangement model, the quality of the solution obtained, the order of
rearrangements found on edges of the phylogeny, the presence of alternative
ancestors and the presence of alternative rearrangement scenarios. A more
practical framework in which to ask questions about the impact of genome re-
arrangements would probably involve looking at more closely related species
where the inferred rearrangement scenario is less disputable.

6.2 Promising New Approaches

The rearrangement model will always have a critical impact on the recon-
structed scenario. In many of the applications presented [13, 14, 46], the
rearrangement model includes reversals, translocations, fusions and fissions,
but these events are considered equally likely (i.e. the weight of each of the
events is the same when the distance is computed). In reality, short reversals
are probably more common than fusions for instance. Consider the carnivore
ancestor shown Figure 5; in the displayed solution, there is a fission between
the ferungulate ancestor and the carnivore ancestor followed by a fusion in
the cat lineage. An alternative solution exists with the same total number
of rearrangements, but in which this fission plus fusion is replaced by a
single fission on the dog lineage and a reversal in the cat lineage. Such a
scenario is probably more realistic than the one displayed but it is masked by
our assumption of equally likely events. Perhaps approaches with weighted
events, such as in Blanchette and coworkers [11], or approaches that make
use of a maximum likelihood framework, such as Larget and coworkers [39],
could help alleviate some of these ambiguities.

Although strictly incorporating transpositions into the rearrangement model
remains computationally challenging, there is renewed interest in allowing
block interchanges, an operation which includes all types of transposition [19,
41,86]. The inclusion of this process actually allows a dramatic simplification
of the HP theory (see Section 3.2) [86] and is likely to enable new applications.
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Nevertheless, because rearrangement models are always debatable, model-
free approaches that make use of breakpoint or conservation distance, such
as Bergeron and coworkers [6], are also attractive and interesting. Hopefully
these approaches will be extended and applied to a larger variety of problems.

Finally, another promising area of research is the analysis of breakpoint
regions. These regions typically contain an unusual mosaic of content [36,77]
and they are also likely to harbor information on the mechanisms behind the
rearrangements that created them. In the context of cancer, these are also the
regions that have the potential to host the destructive fusion genes. Com-
paring cancer breakpoints with evolutionary breakpoints [46] might provide
some information on the forces shaping the genomic architecture of modern
organisms.
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Part 4 Molecular Structure Prediction

9

Predicting Simplified Features of Protein Structure
Dariusz Przybylski and Burkhard Rost

1 Introduction
1.1 Protein Structures are Determined Much Slower than Sequences

At the end of 2005 there were about 30 000 experimentally determined pro-
tein three-dimensional (3-D) structures in public databases [17]. At the same
time there were almost 40 million genes known [16] and approximately 1.5
million verified [11] protein sequences. This gap between structure and se-
quence continues to grow — despite successful efforts at large-scale structure
determination (“structural genomics” [118,150]), the rate of new structures
(thousands per year) continues to increase much slower than the rate of
new sequences (many millions per year). Moreover, experimental structure
determination has been largely or entirely unsuccessful for important classes
such as cell membrane proteins.

1.2 Reliable and Comprehensive Computations of 3-D Structures
are not yet Possible

In principle, we could compute 3-D structures from sequences using basic
physical principles [9]. However, the complexity of the problem exceeds
by far today’s computational resources. Speeding up molecular dynamics
by a factor of 1000 appears an objective within reach to Schroedinger Inc.
While this would undoubtedly yield important insights into the problem,
it may still not bring reliable predictions of 3-D structures from sequence.
Even given infinite CPU resources, another serious obstacle is raised by the
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minute energy differences between native and unfolded structures (around
1 kcal mol~!). This minute difference along with the uncertainty in estimat-
ing constants needed for calculations based on first principles makes it very
difficult to find an approximate approach that is both simple and sufficiently
accurate. Although we cannot model from sequence, comparative modeling
yields rather accurate predictions based on sequence homology to proteins
of known structure [101]. Such modeling is based on the fact that proteins
with similar sequences usually have similar structures. Assume we know the
structure for K and that we want to predict the structure for U that is sequence-
similar to K. Comparative modeling simply predicts U to have the same
structure as K and models the structure of U based on the known backbone
of K. However, for the majority of protein sequences no sufficiently detailed
structural information is available or computable.

1.3 Predictions of Simplified Aspects of 3-D Structure are often very Successful

In the absence of experimental or predicted 3-D structures, many researchers
concentrate on trying to simplify the problem and predict particular struc-
tural features. One of the first well-defined problems was the prediction of
protein secondary structure. Progress in this field has been steady and current
secondary structure predictions are useful for many biological applications.
Techniques that were developed in the context of secondary structure pre-
dictions were successfully applied to the prediction of many other aspects
of protein structure such as solvent accessibility, inter-residue contact maps,
disordered regions, domain organization and specialized for distinctive cases
such as transmembrane regions of proteins.

2 Secondary Structure Prediction
2.1 Assignment of Secondary from 3-D Structure

2.1.1 Regular Secondary Structure Formation is Mostly a Local Process

Three-dimensional structures exhibit extensive local conformational regular-
ities known as regular secondary structure. These local structures (most
importantly helices and sheets) can be described as ordered arrangements
of a polypeptide chain without reference to amino acid type or actual 3-D
conformations. They are stabilized primarily by hydrogen bonds formed
between the atoms present in the polypeptide backbone, but interactions with
solvent and other protein atoms also play an important role. It is believed
that the formation of secondary structure is an important step toward folding.
Identifying the rules for packing the elements of secondary structure against
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each other would afford the derivation of a very limited number of possible
stable conformations. Unfortunately, the formation of secondary structure is
not entirely a local process. Thus, a perfect prediction of secondary structure
without knowledge of nonlocal information is unlikely. Note that secondary
structure can be written in a string of assignments for each residue, i.e. it
is essentially a 1-D feature of protein 3-D structure. (Unfortunately, some
authors are lured into misusing the term 2-D structure, possibly in response
to a misunderstanding of the word “secondary”.)

2.1.2 Secondary Structures can be Somehow Flexible

Regular secondary structure is a striking, macroscopically visible aspect of
3-D structure. However, secondary structures are not rigid. Calculations
and experiments indicate that structural shifting occurs, especially in sur-
face regions. The adoption of a particular structure may depend on many
environmental factors. This is illustrated by the fact that sometimes the
secondary structure states differ among various crystals of the same protein
as well as various nuclear magnetic resonance (NMR) models by as much as
5-15%. This variability constrains the upper limit of what we can expect from
prediction methods — arguably levels of about 90% (percentage of residues
predicted correctly in either of the three states helix, strand, other). While
many residues can be confidently classified into one of the secondary structure
types, there are also those for which classification is ambiguous. This problem
is especially evident at terminal locations of secondary structure elements; it
is just another aspect of the observation that protein structures are dynamic
objects. Historically, assignments were carried out through visual inspection
by experimentalists. That approach introduced a human-based inconsistency.
In 1983, this inconsistency was first addressed by an objective, automatic
assignment method [Dictionary of Secondary Structure of Proteins (DSSP),
see below]. Many such methods followed; they all apply criteria consistent
for all proteins but they often differ between each other.

2.1.3 Automatic Assignments of Secondary Structure

The first assignments of protein secondary structure were carried out by
Pauling and others [126] even before experimental 3-D structures of proteins
became available. They were based on intra-backbone hydrogen bonds. One
of the first and most popular automatic methods, DSSP [76], used a similar
approach. The DSSP method calculates the interaction energy between back-
bone atoms based on an electrostatic model [76]. It assigns a hydrogen bond
if the interaction energy is below a chosen threshold (0.5 kcal mol~!). The
structure assignments are defined such that visually appealing and unbroken
structures are formed from groups of hydrogen bonds. Another popular au-
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tomatic assignment method, the STRuctural IDEntification method (STRIDE
[51]) uses ¢—y torsion angles and empirically derived hydrogen bond en-
ergy. The parameters used by this method are optimized to reproduce visual
assignments provided by experimentalists determining 3-D structures and
so in effect the method averages out human bias. The method DEFINE
[143] assigns secondary structure using Cy coordinates. The assignment is
carried out through comparison of observed Cg, distances with those derived
from ideal secondary structures. If the distances are within set discrepancy
limits, then the secondary structure is assigned. The method P-Curve [173]
makes assignments based on geometrical analysis of protein curvature. It uses
differential geometry-based representations of standard structural motifs and
through a set of geometrical transformations tries to match these motifs with
those found in known 3-D structures. P-Curve assignments differ significantly
from those based on hydrogen bonds and/or ¢—y torsion angles. DSSP,
P-Curve and Define assignment methods agree for only about two-thirds
of all residues [30]. There are various reasons for disagreements; the most
important one may simply be that secondary structure is dynamic, i.e. that
there simply is no such thing as a secondary structure “state”. This problem is
reflected in the DSSPcont method that introduces continuous secondary struc-
ture assignments [8]. The continuum results from calculations of weighted
averages of DSSP assignments that are based on various hydrogen bond en-
ergy thresholds. As a result, each protein residue is assigned with likelihoods
of all secondary structure states. Residues that have a higher probability for a
single “state” appear to also be more rigid according to NMR measurements
of motions on timescales important for protein function [8]. Other, more
application-oriented approaches to defining local structures are possible. For
example, one may try to define a new secondary structure alphabet with a
goal of improving fold recognition algorithms [78]. The numerical values of
prediction accuracy presented in this chapter are based on the most widely
used DSSP assignment. Evaluations based on STRIDE tend to yield higher
values and no state-of-the-art prediction method has been evaluated on P-
Curve.

2.1.4 Reduction to Three Secondary Structure States

DSSP distinguishes eight different “states”: three types of helical structures
[o-helix (“H”, four-residue period), n-helix (“1”, five-residue period) and 319-
helix (“G”, 3-residue period)], extended B-sheet (“E”), B-bridge (“B”), turn
(“T”), bend (“S”) and other nonregular states (blank). Of those, a-helix and
B-strand (Figure 1) comprise more than 50% of all protein residues. Some
prediction methods attempt to predict all eight states. However, a widely
used strategy is to map the eight “states” into three major “classes”: helical,
extended and other (often imprecisely referred to as “nonregular”, “coil”
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Figure 1 Ribbon diagram of protein secondary structures can be classified into
secondary structure. Secondary structures three classes: helical (H), extended (E)
are local arrangements of the protein (strand) and loopy (other) L. The figure
backbone without reference to the amino contains a schematic representation of the

acid type or the 3-D conformation. They are E2 DNA-binding domain [21] (Protein Data
stabilized by hydrogen bonds between atoms  Bank [17] code 1a7g).
of the main chain (backbone). Very roughly,

or “turn”). Different maps are possible, but the most popular one (which
incidentally is most difficult to predict [35]) is the following: [GHI ] = helical
(“h”), [EB] = extended (“e”) and [TS] = nonregular (coil) (“I”). The alternative
translation that results in seemingly higher prediction accuracies, i.e. [H] = he-
lical, [E] = extended and [GITS ] = nonregular, is sometimes used.

2.2 Measuring Performance

2.2.1 Performance has Many Aspects Relating to Many Different Measures

Depending on the application there are various views as to what constitutes a
high-quality prediction. On the one hand, it is important to correctly predict
the secondary structure “state” for each residue (per-residue accuracy); on the
other hand, it may be more relevant to predict the coarse-grained presence of,
for example, a helix than all residues in the helix (segment-based accuracy).
Accordingly, many measures have been used to assess prediction quality:
simple percentages of per-residue accuracy (Eq. 1), Matthew’s correlation
coefficients, percentage of confusion between strand and helix states [38]
(Eq. 2); simple segment-based measures such as the number of correctly pre-
dicted segments, the average ratio of predicted to observed segment lengths,
the difference between the distribution of predicted and observed segment
lengths [156]; or the more elaborated and widely used segment overlap score
SOV [160,187] (Eq.3). These are only some of the measures that have been
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applied. In this chapter, we focus on two measures for per-residue accuracy,
i.e. percentages Qk (Eq. 1) and the BAD score (Eq. 2), and one measure for
per-segment accuracy, i.e. SOV.

2.2.2 Per-residue Percentage Accuracy: Qg

Perhaps the most intuitive and simplest measure for performance is the av-
erage percentage of correctly predicted states. For a protein composed of L
residues and for K possible secondary structure states the per-residue predic-
tion accuracy Qg is defined as:

K
Qk=100x Y C;i/L (1)
i=1
where C; is the number of residues correctly predicted in secondary structure
state i. For a three-state alphabet this translates into a Q3 measure. The
average accuracy can be computed as an average per protein or an average
per residue in which case the number of all residues is used for L.

2.2.3 Per-residue Confusion between Regular Elements: BAD

Not all secondary structure prediction mistakes are equal. For instance, when
using secondary structure predictions to model 3-D structure, confusing helix
and extended (strand) is more detrimental than confusing regular with non-
regular states. The percentage of such “bad” predictions constitutes the BAD
score. If L is a total number of amino acid residues in a protein and B (Be) is
the number of helical (strand) residues predicted in strand (helix) state, then
the BAD score is expressed as:

BAD — 100 @ . @)

Two predictions with equal Q3 and/or SOV scores can have very different
BAD scores.

2.2.4 Per-segment Prediction Accuracy: SOV

Regular secondary structure elements are built of continuous stretches of
residues belonging to the same state, e.g. most helices are about 10 residues
long. It can be argued that mis-predicting two residues at either end of a helix
is not an important mistake (note: 2 + 2 out of 10 means 60% accuracy). In
contrast, only predicting 60% of the helices in a protein is a severe problem.
Such realities are reflected in segment-based measures. The most widely used
is the segment overlap (SOV) measure [160,187]:

1 K mii’lOU(Sobsr Spred) + 8(Sobsr Spred)
SOV =100 x — x len(s ©)
N ;S;lz) maXOV(Sobsspred) ( ObS)



2 Secondary Structure Prediction

where K is the number of different secondary structure types; the second
summation is over all overlapping secondary structure segments of observed
Sobs and predicted s,y secondary structure of the same type; minov is the
number of positions at which segments overlap; maxov is the number of over-
lapping positions plus the number of remaining residues from each segment
of the given pair; len(s,s) is the length of a reference secondary structure
segment (observed experimentally); N is the total number of overlapping
segments pairs of the same type; and 8(s,ps, sprgd) is the accepted variation
between segments that assures ratio of 1.0 when the variations between s
and s ;.4 are minor. One can easily envision two different secondary structure
predictions that have the same Q3 and different SOV scores. For example, if
instead of a observed long helix of length 7 one prediction consists of a shorter
helix of length m and the second prediction comprises two short helices of
combined length equal to m (other residues predicted as coil), then the Q3
scores of both predictions are going to be the same while the SOV scores are
going to be different.

2.3 Comparing Different Methods

2.3.1 Generic Problems

In this section we describe problems with the evaluation of prediction meth-
ods that are entirely generic, i.e. valid for all prediction methods. Although
many ideas and concepts have been introduced to predict secondary structure
and have then been used for other purposes, many of the mistakes in compar-
ing methods have also been unraveled first and most clearly for the example
of secondary structure predictions. Secondary structure prediction methods
may be the only example of publications with claims to performance accuracy
that survived more than a decade. (To put this into perspective: our section
focuses on methods for which performance has, on average, been unusually
well estimated; nevertheless, the only other field that we review for which any
estimate survived 5 years was the prediction of solvent accessibility and the
vast majority of publications in that field heavily overestimated performance!)

2.3.2 Numbers can often not be Compared between Two Different Publications

Prediction methods are often published with estimates of performance that
are supported by cross-validation experiments. However, the terms “cross-
validation” or the related term “jackknife” are by no means sufficiently well-
defined to translate into “estimate ok”. In fact, most publications make some
serious mistakes as is demonstrated by the simple fact that very few estimates
of performance have survived. One problem is the overlap between “training”
and “testing” sets. It is trivial to reach very high performance by training on
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proteins that are very similar to those in the testing set. There are various
strategies that deal with the similarity problem [67,188]. Another issue is
that of using the performance of the test set to choose some parameters by,
for example, reporting full cross-validation results for N different parameters
and then concluding that the best of those N is the performance of the final
method. Instead, performance estimates should always be based on a data
set that was not used in ANY step of the development. However, even if
we had two publications that both used cross-validation “correctly”, we still
cannot necessarily compare the numbers published by both directly. First,
both have to have used the same standard of truth (here, the same assignment
method, e.g. DSSP, and the same conversion of the eight DSSP states into three
prediction classes). Second, they both have to have been based on identical
test sets. Often, the test sets used by developers are not representative and
differ from each other. Proteins vary in their structural complexity and such
variation is correlated with prediction difficulty. We could argue that test sets
should be frozen (and this has indeed been done in many cases). Such a set
should be sufficiently large to allow proper evaluation of statistical differences
among methods. Although a sine qua non, this freezing strategy does not
suffice — data sets in biology change constantly, almost always more recent
sets are more reliable and representative. Therefore, we also need evaluations
based on sets that are as recent as possible. One way of merging these two
demands is by carrying out two tests: one on a frozen set used by others and
the other on a more recent set. As an aside, it is not necessary to use n-fold
cross-validation experiments with the largest possible n. The exact value of n
is not important as long as the test set is not misused for adjusting a method’s
parameters and it is representative of the entire structure space.

2.3.3 Appropriate Comparisons of Methods Require Large, “Blind” Data Sets

One of the solutions to the problem of comparing methods is to use a suf-
ficiently large test set composed of proteins that were neither used nor are
similar to any protein that was used for development of any method. This
idea was first realized in the field of structure prediction through the Critical
Assessment of Structure Prediction (CASP) experiments in which various
prediction methods are tested over the course of a few months on sequences
of proteins the 3-D structure of which is unknown at the time of the prediction
(“blind” prediction). Those experiments evaluate fully automatic methods as
well as human experts (see also Chapter 11 for a more detailed description
of CASP and CAFASP). Due to a variety of reasons, CASP cannot be based
on sufficiently large, representative data sets. Servers that automatically
evaluate methods whenever new data is available address this shortcoming.
Such servers base their comparisons on thousands instead of tens of test
cases (as does CASP). Two such servers exist: EVA and LiveBench. EVA
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[44] continuously evaluates automatic prediction methods (servers) provid-
ing results based on a large, statistically significant and, subsequently, more
representative data sets. One of its principles is to facilitate comparisons
on identical sets and to render comparisons on different sets very difficult.
Another principle is to never distinguish in the rank between two methods
if the difference in their performance is not statistically significant. Both
principles are in stark contrast to what most CASP assessors did.

2.4 History

2.4.1 First Generation: Single-residue Statistics

First attempts to correlate amino acid residue frequency with secondary struc-
ture type can be traced to correlating the content of certain amino acids (e.g.
proline) with the content of a-helix [176]. This was done even before the first
crystallographic structures were available [81,127]. Attempts to correlate the
content of all amino acids with the content of a-helix and B-strand opened
the field of secondary structure prediction [19,20]. The early methods were
usually based on single-residue statistics obtained from very limited data sets
of known protein structures. As such they were not very accurate (Figure 2)
and in addition their accuracy was overestimated at the time.

2.4.2 Second Generation: Segment Statistics

As the number of experimentally determined protein structures grew it be-
came possible to estimate propensities for secondary structure based on con-
secutive segments of residues. Various numbers of adjacent residues (typically
11-21) were considered in assigning secondary structure to a central residue of
a segment. Many different algorithms were applied, but they did not achieve
per-residue prediction accuracies higher than slightly above 60% (Figure 2).
Reports of higher accuracies were due to small data sets and did not hold for
long. The main approaches used were (i) statistical information, (ii) physic-
ochemical properties, (iii) sequence patterns, (iv) artificial neural networks,
(v) graph theory, (vi) expert rules, (vii) nearest-neighbor algorithms and (viii)
hybrid approaches of various algorithms.

2.4.3 Third Generation: Evolutionary Information

Proteins with similar sequences adopt similar structures [27,166]. In fact,
proteins can change more than 70% of their residues without altering the
basic fold [1,15,125,189]. However, the vast majority of possible sequences
supposedly do not adopt globular structures at all. Rather, the exact sub-
stitution pattern of which residues can be changed and how is indicative
of particular structural details. Consequently, the evolutionary information
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Figure 2 Three-state per-residue accuracy
of various prediction methods. Included are
only those methods for which we could run
independent tests. Unfortunately, for most old
methods this was not possible. However,
for each method we had independent
results from PHD (third generation, 1993)
[151,154,159] available. We normalized

the differences between data set by simply
compiling levels of accuracy with respect

to PHD. For comparison, we added the
expected accuracy of a random prediction
(RAN), and the best currently possible

prediction accuracy achieved through
comparative modeling of close homolog
(PDB98). The methods were: C+F (Chou
and Fasman; first generation, 1974) [28,29];
Lim (first, 1974) [93]; GORI (first, 1978)

[53]; Schneider (second, 1989) [169]; ALB
(second, 1983) [140]; GORIII (second, 1987)
[57]; COMBINE (second, 1996) [52]; S83
(second, 1983) [77]; LPAG (third, 1993) [92];
NSSP (third, 1994) [175]; PHDpsi (third,
2001) [137]; JPred2 (third, 2000) [34]; SSpro
(third, 1999) [12]; PROF (third, 2001) [149];
PSIPRED (third, 1999) [73].

contained in sequence alignments can aid structure prediction. In particular
this approach improves prediction of B-strands. For the first and second
generation of prediction methods B-strand prediction was particularly bad
(often only slightly better than random). The pioneering method that used
alignment information was proposed in the 1970s [41]. The first approaches
were based on visual gathering of information from sequence alignments. In
one of the first automatic algorithms making use of alignment information
[107,189] the final secondary structure prediction was an average over all
predictions compiled for each sequence in the alignment. The first method
that succeeded in significantly improving performance by automatically using
alignment information was PHD [151, 154, 157] (Figure 3). This method used a
residue profile extracted from a multiple sequence alignment as an input to the
artificial neural network. Many other methods used artificial neural networks
[73,123,133], but various other algorithms were also applied successfully [38,
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Figure 3 Using evolutionary information proteins will be considered as homologs,

to predict secondary structure. Starting (4) a reduction of redundancy (purge too
from a sequence of unknown structure many too similar proteins), and (5) a final
(SEQUENCE) the following steps are refinement and extraction of the resulting
required to feed evolutionary information into multiple alignment. Numbers 1-5 illustrate
the PROFsec neural networks (upper right): where users of the PredictProtein server

(1 and 2) a database search for homologs [151,161] can interact to improve prediction
through iterated PSI-BLAST [6,7] (protocol accuracy without changes made to the actual
from Ref. [137]), (3) a decision for which prediction method PROFsec.

39, 51, 91, 109, 146, 163] including support vector machines (SVMs) [68,181],
hidden Markov models (HMMs) [79], nearest-neighbor algorithms [163].

2.4.4 Recent Improvements of Third-generation Methods

PHD tore down what once was a magical wall of 70% accuracy. The mark
has been put much higher since. The first significant improvement was
achieved by training neural networks on more diverse sequence alignments
[73]. The alignments were generated by a new alignment method — PSI-
BLAST [7]. It has been shown that a major improvement can be achieved
by using previous types of neural networks with PSI-BLAST alignments [34].
Interestingly, it was also shown that a significant part of the improvement was
simply due to the growth of sequence databases that resulted in more diverse
profiles [137]. In general, the more divergent the alignment the better the
prediction can be obtained. The input quality is also dependent on alignment
quality. This is especially important for divergent homologous proteins where
alignment methods tend to make many mistakes. Yet another simple source of
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improvement is related to the growth of the database of protein structures [17].
Apart from improvements in alignments, there is a lot of research pursuing
development of more sophisticated and accurate algorithms. Those include
new network architectures or learning techniques [3, 12, 78, 132, 133], SVMs
[181] and many others.

2.4.5 Meta-predictors Improve Somehow

Different methods often make different mistakes. As long as those errors
are not purely systematic, combining any number of methods can lead to
improvements in prediction accuracy [62]. For example, the PHD method
utilized this observation by combining differently trained neural networks.
Various implementations of the similar concept were used in many other
methods [24,34,128]. Alternatively, or in addition, different methods can be
combined [5, 35, 36, 60, 83, 158, 170]. Overall, combinations of independent
methods tend to top the single best method. However, it probably is not ben-
eficial to use all of the available prediction methods in the meta-methods. For
example, averaging over all methods evaluated by EVA evaluation server [44,
46] decreased accuracy over the best individual methods (Rost, unpublished).
It is not fully straightforward how to decide whether to include a given
method or not [5]. Concepts weighing the individual method based on its
accuracy and “entropy” [128] appear to be successful only for large numbers
of methods. More rigorous studies for the optimal combination may provide
a better picture. An interesting approach resulted from attempts to improve
meta-methods by developing new methods that are algorithmically different
from the methods already used [85,171]. Recently, an observation has been
made indicating that optimizing meta-servers to achieve highest per-residue
prediction accuracy is not always beneficial when using the final predictions
in various applications [108]. Another issue that has first been introduced
for secondary structure prediction is the measurement for the reliability of a
prediction. To make an extreme point: a method that has 50% accuracy, but
that always correctly identifies in which of the cases it is right and it which
it errs (before knowing the answer), is more useful than a method with 75%
accuracy and no notion about which 25% of the residues are wrong. State-of-
the-art methods reliably estimate the reliability of a prediction. This is not the
case for any of the existing meta-methods.

2.5 State-of-the-art Performance

2.5.1 Average Predictions Have Good Quality

Today’s best methods reach average levels of almost 78% in Qs (Eq. 1) [44, 86].
They are able to accurately predict most segments (SOV scores around 76%).
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Figure 4 Expected variation of prediction accuracy for PROFsec. (A)
Three-state per-residue (Q3) and segment overlap (SOV) accuracies.
(B) Percentage of BAD predictions, i.e. residues either predicted in
helix and observed in strand or predicted in strand and observed in
helix.

In addition the confusion between helices and strands is low (BAD score of
less than 3%).

2.5.2 Prediction Accuracy Varies among Proteins

The standard deviation of three-state-per-residue accuracy computed on the
per-protein basis is about 13% [44, 86] (Figure 4). Thus, some of the proteins
are predicted very well (above 90%), while others are predicted very badly
(even below 40% accuracy levels). The relatively large deviations are also
found in prediction quality measured by other measures. The standard de-
viation of the SOV score is about 15% and that of the BAD score is about 5%.
In particular, proteins having no sequence homologs (no alignment input) are
poorly predicted. This is an important issue for the applicability of secondary
structure predictions since badly predicted secondary structure is not very
valuable.

2.5.3 Reliability of Prediction Correlates with Accuracy

For the user interested in a particular protein U, the fact that the prediction
accuracy varies from protein to protein implies a rather unfortunate message:
the accuracy for U could be lower than 40% or it could be higher than 90%
(Figure 4). Is there any way to provide an estimate at which end of the
distribution the accuracy for U is likely to be? Indeed, many methods provide
numerical estimates of the expected quality of their predictions through so
called reliability indices. Those indices correlate with accuracy. In other
words, residues with higher reliability index are predicted with higher ac-
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Figure 5 Prediction quality correlates with reliability indices. (A)
Average three-state per-residue accuracy and BAD score at different
reliability index thresholds (averaged over entire protein) as predicted
by PROFsec [149]. (B) Corresponding values of standard deviation.

curacy [151,154,157]. Thus, the reliability index offers an excellent tool to
focus on some key regions predicted at high levels of expected accuracy.
Furthermore, the reliability index averaged over an entire protein correlates
with the overall prediction accuracy for this protein (Figure 5).

2.5.4 Understandable Why Certain Proteins Predicted Poorly?

It is not easy to anticipate performance of a secondary structure prediction
method based on overall structural features of proteins. However, prediction
accuracy is correlated with alignment quality. Poor alignments (i.e. nonin-
formative and/or falsely aligned residues) result in inaccurate predictions.
Another interesting observation is that frequently the BAD predictions, i.e.
the confusion between helix and strand are observed in regions that are
stabilized by long-range interactions. Furthermore, helices and strands that
are confused despite a high reliability index often have functional properties
or are correlated to disease states (Rost, unpublished data). Regions predicted
with equal propensity in two different states often correlate with “structural
switches”.

2.6 Applications

2.6.1 Better Database Searches

Initially, three groups independently applied secondary structure predictions
for fold recognition, i.e. the detection of structural similarities between pro-
teins of unrelated sequences [50,152,162]. A few years later, almost every
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other fold recognition/threading method has adopted this concept [10, 37,
40, 63, 72, 74, 80, 87, 122, 124]. Two recent methods extended the concept
by not only refining the database search, but by actually refining the quality
of the alignment through an iterative procedure [65,71]. A related strategy
has been employed to improve predictions and alignments for membrane
proteins [117]. It has also been indicated that prediction mistakes tend to
correlate among structurally related proteins [138], and that alignments based
on purely predicted secondary structure have comparable quality with those
based on matching predicted and observed states. Thus predicted secondary
structure may prove useful in searching sequence databases.

2.6.2 One-dimensional Predictions Assist in the Prediction
of Higher-dimensional Structure

Secondary structure predictions are now accurate enough to be used as input
for methods that target the prediction of higher order aspects of protein
structure automatically. A few successful applications include the follow-
ing. Contact map predictions [13] have recently improved the level of accu-
racy significantly; an important contribution was the inclusion of secondary
structure predictions [141]. They also help in the prediction of folding rates
[69,142]. Secondary structure predictions have also become a popular first
step toward predicting 3-D structure. Ortiz and coworkers [121] successfully
use secondary structure predictions as one component of their 3-D structure
prediction method. Eyrich and coworkers [47,48] minimized the energy of
arranging predicted rigid secondary structure segments. Lomize and cowork-
ers [103] also started from secondary structure segments. Chen and coworkers
[25] suggested using secondary structure predictions to reduce the complexity
of molecular dynamics simulations. Levitt and coworkers [164, 165] combined
secondary structure-based simplified presentations with a particular lattice
simulation attempting to enumerate all possible folds.

2.6.3 Predicted Secondary Structure Helps Annotating Function

Secondary structure predictions are also useful to annotate/predict protein
function. For example, secondary structure predictions have been used suc-
cessfully in completely automatic predictions of subcellular localization [116].
A more typical use of secondary structure prediction is in aiding experts in
finding similarities among proteins with insignificant sequence similarity. In
this way functional annotation is sometimes transferred from one protein to
another [184].
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2.6.4 Secondary Structure-based Classifications in the Context
of Genome Analysis

Proteins can be classified into families based on predicted and observed sec-
ondary structure [56,139]. However, such procedures have been limited to a
very coarse-grained grouping only sometimes useful for inferring function.
Nevertheless, predictions of membrane helices and coiled-coil regions are
crucial for genome analysis. More than one fifth of all eukaryotic proteins
appear to have regions longer than 60 residues apparently lacking any regular
secondary structure [102]. Most of these regions were not of low complexity,
i.e. not composition biased. Surprisingly, these regions appeared evolu-
tionarily as conserved as all other regions in the respective proteins. This
application of secondary structure prediction may aid in classifying proteins,
and in separating domains, possibly even in identifying particular functional
motifs.

2.6.5 Regions Likely to Undergo Structural Change Predicted Successfully

Prions and prion-like proteins appear to aggregate through the transition of a
regular secondary structure: what is “usually” a helical region switches to a
strand that becomes the root of aggregation in the case of disease mutants.
The reliability of the PHD secondary structure predictions combined with
experimental evidence gave the first hint where this expected transition might
occur [136]. Interestingly, it is still difficult to actually observe the strand in
structures of even the mutant prion, while state-of-the-art prediction methods
always predict the region with an observed helix to be in a strand. This
example casts some light on the importance of transitions and the useful-
ness of predictions to capture such transitions. Young and coworkers [84]
have pushed this observation further by unraveling an impressive correlation
between local secondary structure predictions and global conditions. The
authors monitor regions for which secondary structure prediction methods
give equally strong preferences for two different states. Such regions are pro-
cessed combining simple statistics and expert rules. The final method has been
tested on 16 proteins known to undergo structural rearrangements and on a
number of other proteins (one of those was a prion). The authors report no
false positives and identify most known structural switches. Subsequently, the
group applied the method to the myosin family identifying putative switching
regions that were not known before, but appeared reasonable candidates [84].
This method is remarkable in two ways: (i) it is a very general method using
predictions of protein structure to predict some aspects of function and (ii)
it illustrates that predictions may be useful even when structures are known
(as in the case of the myosin family). While the method is tailored to catch
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more subtle changes than occur in prions, there is some evidence that amyloid
aggregation is also captured to some extent.

2.7 Things to Remember when using Predictions

2.7.1 Special Classes of Proteins

Prediction methods are usually derived from knowledge contained in pro-
teins from subsets of current databases. Consequently, they should not be
applied to classes of proteins not included in these subsets, e.g. methods for
predicting helices in globular proteins are likely to fail when applied to predict
transmembrane helices. In general, results should be taken with caution for
proteins with unusual features, such as proline-rich regions, unusually many
cysteine bonds or for domain interfaces.

2.7.2 Better Alignments Yield Better Predictions

Multiple alignment-based predictions are substantially more accurate than
single sequence-based predictions [14,39,151]. How many sequences are
needed in the alignment for an improvement; and how sensitive are prediction
methods to errors in the alignment? The more sequences contained in the
alignment diverge, the better (two distantly related sequences often improve
secondary structure predictions by several percentage points). Regions with
few aligned sequences yield less reliable predictions. The sensitivity to align-
ment errors depends on the methods, e.g. secondary structure prediction is
less sensitive to alignment errors than solvent accessibility prediction.

2.8 Resources

2.8.1 Internet Services are Widely Available

Programs for the prediction of secondary structure available as Internet ser-
vices have mushroomed since the first prediction service PredictProtein went
on line in 1992 [159,161]. The META-PredictProtein server [45] enables users
to access a number of the best prediction methods through one single inter-
face. Unfortunately, not all methods available have been sufficiently tested
and some are not very accurate. This problem is addressed by the EVA server
that evaluates prediction servers continuously and automatically [44, 86].

2.8.2 Interactive Services

The PHD/PROF prediction methods are automatically available via the In-
ternet service PredictProtein [45]. Users have the choice between the fully
automatic procedure taking the query sequence through the entire cycle or
expert intervention into the generation of the alignment. Indeed, without
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spending much time users typically can improve prediction accuracy easily
by choosing “good” alignments. A few of the state-of-the-art methods are also
available to run locally. Note, however, that one crucial step is the generation
of appropriate alignments; usually this is not “done for you” when you run
the prediction method locally!

2.8.3 Servers

The following servers are publicly available (most links given by the EVA
server): PROFsec [149], PHDsec [159], PHDpsi [137], PSIPRED [73], SSPRO
[133], PORTER [132], SABLE [3], SAM-TO02 [79], Jpred [34], APSSP, JUFO [110],
PROF [123], YASPIN [94].

3 Transmembrane Regions
3.1 Transmembrane Proteins are an Extremely Important Class of Proteins

Approximately 15-30% of all proteins are estimated to contain transmem-
brane regions [97,111]. Those proteins are responsible for the communica-
tion between the cell and its surroundings, and are of great importance to
biomedicine. The cell membrane environment, composed of a lipid bilayer,
is very different from one found in most cellular compartments. The trans-
membrane segments of proteins tend to be hydrophobic which enables them
to remain within a membrane by avoiding the solvent present at both bound-
aries. The special features of transmembrane protein sequences serve as the
basis for identifying them by computational methods. As in case of globular
proteins, the transmembrane segments form regular secondary structures and
can be assigned to two broad classes: those composed entirely of helices and
those composed of strands (despite ardent searches and putative evidence,
we still do not have any proof for the existence of a mixture of the two).
By far the majority of all membrane proteins appear to be of the helical type
[18]. An important characteristic of transmembrane proteins is the orientation
of membrane segments with respect to the N-terminus of a protein, often
referred to as the topology. Usually, the successful prediction of transmem-
brane segments requires proper identification of transmembrane regions in
sequence, actual prediction of the secondary structure and deciphering the
topology. It is very difficult to experimentally determine 3-D structures for
transmembrane proteins. Despite considerable advances over the last decade,
we still have experimental structures or theoretical models for supposedly
less than 10% of, for example, all human membrane proteins (Punta, Liu and
Rost, unpublished). Useful predictions of structural and functional aspects are
therefore highly needed.
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3.2 Prediction Methods

Although all known transmembrane regions constitute of regular secondary
structures, most secondary structure prediction methods developed for non-
membrane proteins mostly fail to correctly predict membrane regions. Fur-
thermore, very few methods have been developed for proteins with B-strands
in the membrane. The first and most basic methods for helical membrane
regions focused on identification of transmembrane segments based simply
on residue hydrophobicity [90]. It was observed that positively charged
residues are more abundant on the inside of the membrane (the “positive-
in” rule). A simple Kyte-Doolittle hydrophobicity plot [90] can thus provide
much information on the presence of such transmembrane segments. This
led to the development of the method that predicted positions of helices and
the topology of helical membrane proteins [179]. Next, neural networks were
applied to better identify transmembrane helices, and differentiate between
membrane and nonmembrane proteins [153]. Among other approaches were
HMM methods attempting to match the sequence to the predefined “gram-
mar” of transmembrane proteins [88] (see Chapter 3 for basics on HMMs)
and many others [33,66]. Recently, groups have begun to venture into the
development of methods that predict membrane regions with -strands [18,
42,59, 70].

3.3 Performance

Estimates for the accuracy in predicting membrane regions are extremely
problematic because there are so few high-resolution structures available.
Consequently, all methods in the past were evaluated by also using low-
resolution information from biochemical experiments that provide some evi-
dence for the location of transmembrane regions. Unfortunately, such exper-
iments can be more inaccurate than prediction methods [26]. This was one of
the reasons why the performance of prediction methods had been significantly
overestimated by the end of the last millennium [26, 113]. It now appears that
the best prediction methods correctly predict all membrane helices for about
50-70% of all proteins, very few methods avoid the confusion between very
hydrophobic signal peptides and membrane proteins, and the best methods
falsely identify membrane helices in about 10% of all nonmembrane proteins
[26,113]. However, results can be far worse, e.g. most hydrophobicity-based
methods misclassify over 50% (!) of all globular proteins as “containing
membrane helices” [26]. Overestimates in publications are also a very serious
problem — even over the last few years, methods have been published in
prominent journals with estimated levels of above 95% accuracy that failed
to reach significantly above 50% and misclassified over 30% of the globular
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proteins [26]. Note also that there are a few top methods available at the
moment; all of these have their own strengths and weaknesses, i.e. there is no
single one “best method”. Predictions of B-barrel membrane regions currently
appear to be more accurate than those for helical membrane regions; however,
this may likely turn out to be an overestimate caused by the fact that we have
too limited experimental information.

3.4 Servers

There are many more methods than the following available; however, the
methods listed here have sustained many evaluations. Helical membrane
proteins: PHDhtm [153], SOSUI [66], TopPred [179], TMHMM [88], DAS [33];
B-barrel membrane regions: ProfTMB [18].

4 Solvent Accessibility

4.1 Solvent Accessibility Somehow Distinguishes Structurally Important
from Functionally Important

In 3-D structures of globular proteins some of residues are buried deep inside,
whereas others are located on the surface and thus are more exposed to the
surrounding solvent. Residues that are more exposed to solvent are also more
accessible to other biological agents and, consequently, are much more likely
to be involved in functional interactions which require spatial accessibility
such as enzymatic activity, DNA binding, signal transduction, etc. However,
buried residues are much more likely to play important roles in stabilizing
structures of proteins. Thus, a good distinction between exposed and buried
residues can be very useful to distinguish residues that are important for
function (conserved and exposed) from those that are important for structure
(conserved and buried).

4.2 Measuring Solvent Accessibility

Solvent accessibility is usually measured in terms of the surface area accessible
to water molecules. The values can range from 0 A for entirely buried residues
to around 300 A for the largest residues on the surfaces of proteins. A measure
that is not dependent on the size of the amino acid residue is the relative
solvent accessibility expressed as a percentage of the residue surface that is
exposed to solvent. It appears that among homologous proteins the relative
solvent accessibility is less conserved than secondary structures [155]. In
addition, the solvent accessibility of protein residues is strongly influenced
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by nonlocal interactions, where residues located far away along a protein
sequence can be in spatial proximity resulting in mutual screening from sol-
vent. Thus, predicting solvent accessibility appears to be more difficult than
prediction of secondary structure. It addition, it was shown that among
the evolutionarily related proteins of similar structure buried residues (less
than 10% accessible surface area) tend to be much more highly conserved
than highly exposed residues (more than 60%) [155]. Thus, for methods that
use evolutionary information derived from alignments of related proteins it
should be easier to closely predict accessibility for buried residues than for the
exposed ones. A simplified approach is to try to distinguish between residues
below a certain solvent accessibility threshold (“buried”) and those above it
(“exposed”). There is no biophysical reason to choose one threshold over
another, and different researchers often choose different thresholds (7, 9, 16
and 25% are used). On average, about half of all protein residues have more
than 25% of their surfaces exposed.

4.3 Best Methods Combine Evolutionary Information with Machine Learning

Some of the methods that predict secondary structure also have the capability
of predicting solvent accessibility, since essentially the same basic concepts
apply to building a solvent accessibility predictor. For example, PHDacc [155]
and PROFacc [149] methods, which are part of the PredictProtein [159,161]
server, use the same sequence profile input as do their respective secondary
structure prediction counterparts (PHDsec and PROFsec). They use a neural
network that assigns relative solvent accessibility into one of the 10 states
corresponding to squares of relative solvent accessibility (state 10 corresponds
to a range 81-100% of solvent accessibility). This 10-state scheme can be
converted to a two-state scheme or to a prediction in terms of actual value
of the exposed surface. Another well known method is Jpred [36]. It is
also a server that predicts both secondary structure and solvent accessibil-
ity. The method uses alignments generated by HMMs and PSI-BLAST as
input to a neural network. The output of predictions from two different
networks is combined to give a final relative solvent accessibility. Many
other variations and similar approaches have been attempted which include
various types of neural networks [2, 4, 34, 131], SVMs [82], Bayesian networks
[177], information-theoretic approaches [115] and simple baseline approaches
[144]. Most recently the relation between secondary structure and accessibility
was explored to develop methods that combine both predictions explicitly to
improve each one [2,149].
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4.4 Performance

Unlike the prediction of secondary structure that is continuously assessed
and monitored on identical data sets, methods for the prediction of solvent
accessibility are not. Given that different groups use widely different data sets
and different conventions to convert actual values of solvent accessibility into
prediction states, it is impossible to compare and reasonably summarize levels
of performance. However, two-state predictions (either buried or exposed) are
predicted at levels above 75% accuracy. Whatever values you read, note that
advanced methods are significantly more accurate than simple methods based
on simple features such as hydrophobicity, polarity or simple statistics.

4.5 Servers

PROFacc [149], PHDacc [155], SABLE [2], Jpred [34], ACCpro [131].

5 Inter-residue Contacts
5.1 Two-dimensional Predictions may be a Step Toward 3-D Structures

Directly predicting 3-D structure still fails. Predictions of 1-D aspects of pro-
tein structure, such as secondary structure and solvent accessibility, provide
very valuable information. However, 1-D predictions are far too simplified.
There is a path seemingly in between these two extremes (1-D/3-D), i.e. the
prediction of inter-residue distances. In fact, 3-D structures can be recon-
structed more or less completely from 2-D distance maps. The catch is that
distance maps are as hard to guess as 3-D coordinates. As a consequence,
existing methods try to solve the simplified problem of predicting contact
maps, where two residues are considered to be in contact if they are located
within a certain spatial cut-off distance (this results in a binary classification
of residue pairs, i.e. contact/noncontact pairs).

5.2 Measuring Performance

There is no widely accepted threshold for the maximal distance between two
residues that are considered as “in contact”. While the smallest physically
possible distance could be agreed upon, the limit beyond which the interac-
tion between two residues can be considered negligible is more difficult to
define. However, the distance of 8 A between CB atoms is the most widely
used threshold for the evaluation of the performance of these prediction
methods. The output of contact prediction programs is generally a list of
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residue pairs, ranked according to some internal confidence score. Usually,
only contacts between pairs that exceed a minimal sequence separation are
evaluated. Although many different thresholds have been used, minimal
separations of six and 24 sequence positions are most common for prediction
of medium- and long-range contacts, respectively. These parameters are
important as the task becomes more difficult with increasing separation (this
tendency levels off for separations over 20).

5.3 Prediction Methods

One line of methods was based upon the observation that evolutionary pres-
sure on maintaining protein structure would sometimes require correlation
in the mutations of amino acid residues that are in spatial proximity to each
other. In principle, such patterns of correlation could be discerned in the
multiple alignments of protein sequences. Some of the early contact prediction
methods have indeed used only correlated mutations computed from multi-
ple sequence alignments [58,119]. The currently best methods make also use
of other protein features, such as evolutionary profiles of the nearest neighbors
of the residue pair being predicted, sequence separation, secondary structure
and solvent accessibility predictions. Further improvement of predictions was
achieved through machine learning techniques such as: neural networks that
use [49,61,120] or do not use [130, 141] correlated mutations, HMMs [22, 129,
172], SVMs [188] and genetic programming [104].

5.4 Performance and Applications

As the prediction of nonlocal contacts is difficult, progress in the field had been
slow until recently when two promising new methods entered the CASP6
competition in 2004. When L/2 predictions are considered, the accuracy of
state-of-the-art methods is around 30% for sequence separation of at least six
and around 20% for sequence separation of at least 24. Although predicted
contact maps are not very accurate, they are nevertheless better on average
than the contact maps obtained from the best de novo predictions of 3-D
structures [46]. As a result, the automatically predicted contact maps were
successfully used in prediction of 3-D protein structures [119,121, 174].

5.5 Servers

PROFcon [141], CORNET [120], CMAPpro [129], GPCPRED [104], Hamilton’s
server [61].

283



284

9 Predicting Simplified Features of Protein Structure

6 Flexible and Intrinsically Disordered Regions

6.1 Local Mobility, Rigidity and Disorder all are Features that Relate to Function

In crystal structures of proteins, the uncertainty of atomic positions can be
represented by B-factors (Debye-Waller factors) [32]. B-factors represent the
combined effects of thermal variation and static disorder. In general, the
higher the B-factor of a residue, the higher is its flexibility. Further, it has
been demonstrated that many proteins and protein regions lack a unique
3-D structure [180]. Those regions are often characterized as an ensemble
of rapidly changing alternative structures with differing backbone torsion
angles. Estimates indicate that a substantial fraction of all proteins (as much as
25%) may contain disordered regions or be entirely disordered [43, 102, 148,
182]. Many important functional interactions, such as cell-cycle regulation,
signal transduction, gene expression and chaperon action, are associated with
proteins containing very flexible and disordered regions. Determination of
these regions also plays an important role in structural genomics, since such
regions can be a source of problems in protein expression, purification and
crystallization.

6.2 Measuring Flexibility and Disorder

Protein flexibility can be derived from normalized B-factors [23]. Character-
ization of disordered regions can be provided by many experimental tech-
niques, but in particular by NMR spectroscopy. Regions of protein X-ray
structures without atomic coordinates are often considered as intrinsically
disordered regions. Successful predictions should be able to simply indicate
intrinsically disordered regions, or in case of protein flexibility to assign accu-
rate normalized B-factors to protein residues.

6.3 Prediction Methods

Methods predicting regions of low compositional complexity in protein se-
quences (SEG [185] and CAST [135]) can be considered as the first methods
predicting disordered regions in proteins. However, the correlation between
low-complexity regions and disorder is far from perfect. The low-complexity
regions are highly repetitive in their amino acid composition but many of
them have well defined 3-D structures [167]. There are methods that attempt
to predict if entire proteins are in “natively unfolded” configurations based
on hydrophobicity and charge information derived from sequences [178]. The
disordered regions can be predicted based on disorder propensity assigned
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to each amino acid [95]. Other methods use machine learning algorithms
such as neural networks [75, 95, 147] or SVMs [182]. The NORSp method
[99] predicts extended nonregular secondary structure segments that often
correlate with disorder. Predictions of B-factors were also carried out by
methods using artificial neural networks [168] or support vector regression
[186]. The prediction accuracy of those methods was not experimentally
verified on the large scale yet.

6.4 Servers

PROFbval [168], PONDR [147], DISOPRED [75], DISOPRED?2 [182], GlobPlot
[95], NORSp [99], FoldIndex [134], DisEMBL [95].

7 Protein Domains
7.1 Independent Folding Units

The visual inspection of 3-D structures of large proteins often reveals com-
pact structural subunits referred to as protein domains. Such domains are
assumed to often constitute units that fold independently. Studies indicate
that some of those proteins can be viewed as combinatorial arrangements of
protein domains that are genetically mobile. Often, the structural domains are
associated with particular biological functions. It is postulated that domains
are independent folding units of large proteins. Knowledge of the domain
organization of proteins of unknown 3-D structures can help experimental
and computational attempts to elucidate their structure and function. Recent
analyses of sequence-structure families suggest that over two-thirds of all
proteins have more than one domain and that most domains span over about
100 residues [96].

7.2 Prediction Methods

The prediction of the domain organization is a challenging problem if we
do not know the 3-D structure (and automatic assignment methods disagree
much more than secondary structure assignment methods even if we know
the structure). Many sequence-based methods predict domains that are sig-
nificantly shorter than actual structural domains [98]. The first automatic
prediction methods, such as ProDom [31], attempted to determine domains
based on “boundaries” in multiple alignments of protein sequences. This
approach often results in fragmentation of actual structural domains since
sequence similarity conservation often does not extend over entire domains.
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In a similar approach, domain constraints can also be obtained from sequence
alignment databases such as BLOCKS [64]. Attempts to explicitly elongate
sequence alignments were also made [54]. Other automatic prediction meth-
ods apply concepts from protein structure prediction [55] or try do derive
domains from predicted contact maps [145]. There are methods that use
statistics of domain size distributions [183] or a statistical approach toward
combining various sources of information [89]. Some of the methods use
artificial neural networks [112,114]. Others explore alternative ways of using
sequence alignment information [105] or alignments of predicted secondary
structure elements [106]. The most accurate methods (e.g. CHOP [96]) simply
use sequence homology to proteins with known domain assignments. The
downside of such methods is the low coverage, i.e. that they often do not find
domains. None of these more recent methods has yet been experimentally
verified on large scale.

7.3 Servers

CHOP (homology based) [96], CHOPnet [100], ProDom (homology based)
[31], DOMAINATION [54], SnapDRAGON [55], DomSSEA [106].
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Homology Modeling in Biology and Medicine
Roland L. Dunbrack, Jr.

1 Introduction
1.1 The Concept of Homology Modeling

To understand basic biological processes such as cell division, cellular commu-
nication, metabolism and development, knowledge of the three-dimensional
(3-D) structure of the active components is crucial. Proteins form the key
players in all of these processes, and the study of their diverse and elegant
designs is a mainstay of modern biology. The Protein Databank (PDB) of
experimentally determined protein structures [14] now contains nearly 40 000
entries, which can be grouped into about 1500 superfamilies [5]. The fact that
proteins that share very little or no sequence similarity can have quite similar
structures has led to the hypothesis that there are in fact only a few thousand
different superfamilies [46, 84, 233] which have been adapted by a process
of duplication, mutation and natural selection to perform all the biological
functions that proteins accomplish.

Since it was first recognized that proteins can share similar structures [156],
computational methods have been developed to build models of proteins of
unknown structure based on related proteins of known structure [24]. Most
such modeling efforts, referred to as homology modeling or comparative
modeling, follow a basic protocol laid out by Greer [72,73]: (i) identify a
template structure related to the target sequence of unknown structure, and
align the target sequence to the template sequence and structure; (ii) for core
secondary structures and all well-conserved parts of the alignment, borrow
the backbone coordinates of the template according to the sequence alignment
of the target and template; (iii) for segments of the target sequence for which
coordinates cannot be borrowed from the template because of insertions and
deletions in the alignment (usually in loop regions of the protein) or because
of missing coordinates in the template, build these segments using some
construction method based on our knowledge of the determinants of protein
structure; (iv) build side chains determined by the target sequence on to the
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backbone model built from the template structure and loop construction; (v)
refinement of the model from the template backbone and toward the target
structure.

The alignment step may involve a number of different strategies, including
manual adjustment, even after the template structure or structures have been
identified. Steps (iii) and (iv), backbone and side chain modeling, may be cou-
pled, since certain backbone conformations may be unable to accommodate
the required side-chains in any low-energy conformation. The refinement step
involves moving beyond the aligned part of the backbone fixed in the template
position and instead allowing it to adjust to the new sequence. For instance,
two helices packed against each other may move apart to accommodate larger
side-chains.

An alternative strategy has been developed by Blundell and colleagues,
based on averaging a number of template structures, if these exist, rather
than using a single structure [18,207,208]. More complex procedures based on
reconstructing structures (rather than perturbing a starting structure) by sat-
isfying spatial restraints using distance geometry [78] or molecular dynamics
and energy minimization [118,173,174,180] have also been developed.

Many methods have been proposed to perform each of the steps in the
homology modeling process. There are also a number of research groups that
have developed complete packages that take as input a sequence alignment
or even just a sequence and develop a complete model. In this chapter, we
describe some of the basic ideas that drive loop and side-chain modeling
individually as well as the complete modeling process. This chapter is a
revised version of one that was published in 2001 [48]. In this revision, we
emphasize those methods for which usable programs are currently publicly
available. We also discuss more extensively the concept of modeling from the
biological unit, including complexes of proteins with other proteins, DNA and
ligands. The identification and alignment steps are covered in Chapters 3 and
11.

1.2 How do Homologous Protein Arise?

By definition, homologous proteins arise by evolution from a common ances-
tor. However, there are several different mechanisms for this and these are
illustrated in Figure 1. The first is random mutation of individual nucleotides
that change protein sequence, including missense mutations (changing the
identity of a single amino acid) as well as insertions and deletions of a number
of nucleotides that result in insertion and deletion of amino acids. As a single
species diverges into two species, a gene in the parent species will continue to
exist in the divergent species and over time will gather mutations that change
the protein sequence. In this case, the genes in the different organisms will
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Figure 1 Orthologs versus paralogs. functions, or the two genes may specialize
Schematic of the evolutionary process that in carrying out two or more functions of the
gives rise to homologous proteins. (a) A ancestral gene, thus improving the fitness of
single gene X in one species is retained the organism. These genes in one species
as the species diverges into two separate are paralogous. If the species diverges,
species. The genes in these two species each daughter species may maintain the

are orthologous. (b) A single gene X in one duplicated genes, and therefore each species
species is duplicated. As each gene gathers contains an ortholog and a paralog to each
mutations, it may begin to perform new gene in the other species.

usually maintain the same function. These genes are referred to as orthologs
of one another. A second mechanism is duplication of a gene or of a gene
segment within a single organism or germ line cell. As time goes by, the
two copies of the gene may begin to gather mutations. If the template gene
performed more than one function, e.g. similar catalytic activity on two
different substrates, one of the duplicated genes may gain specificity for one
of the reactions, while the other gene gains specific activity for the other. If this
divergence of specificity in the two proteins is advantageous, the duplication
will become fixed in the population. These two genes are paralogs of one
another. If the species with the pair of paralogs diverges into two species,
each species will contain the two paralogs. Each gene in each species will now
have an ortholog and a paralog in the other species.

1.3 The Purposes of Homology Modeling

Homology modeling of proteins has been of great value in interpreting the
relationships of sequence, structure and function. In particular, orthologous
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proteins usually show a pattern of conserved residues that can be interpreted
in terms of 3-D models of the proteins. Conserved residues often form a
contiguous active site or interaction surface of the protein, even if they are
distant from each other in the sequence. With a structural model, a multiple
alignment of orthologous proteins can be interpreted in terms of the con-
straints of natural selection and the requirements for protein folding, stability,
dynamics and function.

For paralogous proteins, 3-D models can be used to interpret the similarities
and differences in the sequences in terms of the related structure, but different
functions of the proteins concerned [121]. In many cases, there are significant
insertions and deletions and amino acid changes in the active or binding
site between paralogs. However, by grouping a set of related proteins into
individual families, orthologous within each group, the evolutionary process
that changed the function of the ancestral sequences can be observed. Indeed,
homology models can serve to help us identify which protein belongs to
which functional group by the conservation of important residues in the active
or binding site [62]. A number of recent papers have been published that use
comparative modeling to predict or establish protein function [95,106,142,222,
225]; see also Chapter 33.

Another important use of homology modeling is to interpret point muta-
tions in protein sequences that arise either by natural processes or by exper-
imental manipulation. The human genome project has produced significant
amounts of data concerning polymorphisms and other mutations potentially
related to differences in susceptibility, prognosis and treatment of human
disease. There are now many such examples, including the Factor V/Leiden
R506Q mutation [247] that causes increased occurrence of thrombosis, muta-
tions in cystathionine B-synthase that cause increased levels of homocysteine
in the blood, a risk factor for heart disease [101], and BRCA1 for which many
sequence differences are known, some of which may lead to breast cancer
[34]. At the same time, there are many polymorphisms in important genes
that have no discernible effect on those who carry them. At least for some
of these, there may be some effect that has yet to be measured in a large
enough population of patients and therefore the risk of cancer, heart disease
or other illness to these patients is unknown. This is yet another important
application of homology modeling, since a good model may indicate readily
which mutations pose a likely risk and which do not [92].

Homology models may also be used in computer-aided drug design, es-
pecially when a good template structure is available for the target sequence.
For enzymes that maintain the same catalytic activity, the active site may be
sufficiently conserved such that a model of the protein provides a reasonable
target for computer programs which can suggest the most likely compounds
that will bind to the active site (see also Chapter 16). This has been used
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successfully in the early development of HIV protease inhibitors [223,224]
and in the development of anti-malarial compounds that target the cysteine
protease of Plasmodium falciparum [166].

1.4 The Effect of the Genome Projects

The many genome projects now completed or underway have greatly affected
the practice of homology modeling of protein structures. First, the many new
sequences have provided a large number of targets for modeling. Second, the
large amount of sequence data makes it easier to establish remote sequence
relationships between proteins of unknown structure and those of known
structure on which a model can be built. The most commonly used methods
for establishing sequence relationships such as PSI-BLAST [3] are dependent
on aligning many related sequences to compile a pattern or profile of sequence
variation and conservation for a sequence family. This profile can be used to
search among the sequences in the PDB for a relative of the target sequence
(see Chapter 11). The more numerous and more varied sequences there
are in the family, the more remote are the homologous relationships that
can be determined and the more likely it is that a homologous template
for a target sequence can be found. Third, it is likely that the accuracy of
sequence alignments between the sequence of unknown structure that we are
interested in and the protein sequence of a template are also greatly improved
with profiles established from many family members of the target sequence
[184]. Fourth, the completion of a number of microbial genomes has prodded
a similar effort among structural biologists to determine the structures of
representatives of all common protein sequence families, or all proteins in a
prototypical genome, such as Mycobacterium tuberculosis [15,126,163,210,241].
Protein structures determined by X-ray crystallography or NMR spectroscopy
are being solved at a much faster pace than was possible even 10 years ago.
The great increase in the number of solved protein structures has a great
impact on the field of homology modeling, since it becomes ever more likely
that there will be a template structure in the PDB for any target sequence of
interest [221] (see also Chapter 13).

Given the current sequence and structure databases, it is of interest to deter-
mine what fraction of sequences might be modeled and the range of sequence
identities between target sequences and sequences of known structure. In Fig-
ure 2, we show histograms of sequence identities of the sequences in several
genomes and their nearest relatives of known structure in the PDB. These
relationships were determined with PSI-BLAST as described in the legend.
PSI-BLAST is fairly sensitive in determining distant homology relationships
[85,184,232], although more sensitive techniques exist (see Chapter 11). The
results indicate that on average 30-40% of genomic protein sequences are

301



B
T T T T T “tp, T T T T

8,8

= 8
e [ SS9,
- 7>
ey g 632
o v %O
T = L

; Oy - S m

o
o~
=
P
@ - aﬁ,ﬁ,
6, M “20
° g g O¢
= T Z = Zg,
SN e
S T g 3
ot o 2
m 0080 0D 00011 000 00 R0 0 00 0 A1 dv?&r m ] &vvdv
73
w fin T NS ,,& ] jan) No»%u,%
U100 1010010100000 1 P [imeaiiiseseiisemni iiiiBsaiin S %2
a—— 7&, it Cop
&alw, 1 w1 w1 v Q&Q/,%W
<
W L I P %
Q oh 15 N
m g =} % O
329 e iarm———— i ———— : T %5
jwn ﬁ S SEIIIIEIRIIIBI Y 760/ . 00 585 5 O S \,,ﬁ\
Q
v MO %,
’ , 21y
- Y I 4
L 0 1 1 100 ,\waw i s e 1 L1 1 D1 e 1 i m\veﬂ%

302 | 10 Homology Modeling in Biology and Medicine

0.1

|
«@
=}

02—

|
=t
3

0.6 —



2 Input Data

easily identified as related to proteins of known structure, which presents
a large number of potential targets for homology modeling. However, it
should also be pointed out that the average sequence identity between target
sequences and template structures in the PDB is less than 25%.

The low sequence identity between target and template sequences in Fig-
ure 2 presents a major challenge for homology modeling practitioners, since
a major determinant in the accuracy of homology modeling is the sequence
identity between the target sequence and the sequence of the template struc-
ture. Atlevels below 30% sequence identity, related protein structures diverge
significantly and there may be many insertions and deletions in the sequence
[31]. At 20% sequence identity, the average RMSD of core backbone atoms
is 24 A [31,169]. However, as demonstrated in Figure 2, it is likely that
we will most often face a situation where the target and template sequences
are remotely related. Most widely used homology modeling methods have
been predicated on much higher sequence identities between template and
target, usually well above 30% [43,155,181]. What methods should be used at
sequence identities in the 10-30% range is of crucial importance in this post-
genomic era.

2 Input Data

To produce a protein model that will be useful and informative requires more
than placing a new sequence onto an existing structure. A large amount of
sequence data and other kinds of experimental data can often be gathered
on the target sequence and on its homolog of known structure to be used for
model building. This information can be used to build a better model and
as the data to be interpreted in light of the model. The goal is to forge an

Figure 2 Distribution of
sequence identities between
protein in four genomes and their
closest homologs in the PDB for
those sequences in genomes
with homologs in the PDB. PSI-
BLAST was used to search the
nonredundant protein sequence
database with a representative

set of PDB sequences as queries.

The program was run for four
iterations, with a maximum
E-value of 0.0001 used to
determine sequences which

are included in the position-
specific similarity matrix. After
four iterations, each matrix was
used to search each of the four
genomes. Coiled-coil and low-
sequence complexity sequences
were removed from each genome
and the nonredundant sequence
database. All hits in the genomes
with E-values less than 0.001
were saved and the histograms
were built from the PSI-BLAST-
derived sequence identities.
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integrated model of the protein sequence, structure, and function, not merely
to build a structure. In Table 1, we list the kinds of information that might be
available for a target protein and how these data might be processed.

Table 1 Input information for homology model building

Target sequence

o Target orthologous relatives (from PSI-BLAST)
o Target paralogous relatives (from PSI-BLAST)

e Multiple sequence alignment of orthologs and paralogs (either BLAST multiple alignment or
(preferably) other multiple alignment program)

e Sequence profile of ortho/paralogs

Template sequences and structures

o Homolog(s) of known structure [template(s)] determined by database search methods (BLAST,
PSI-BLAST, intermediate sequence search methods, HMMs, fold recognition methods)

o Template orthologous sequences

o Template paralogous sequences

e Multiple sequence alignment of template orthologs and paralogs

e Biological units of available templates from RCSB and EBI/PQS

Alignment of target sequence to template sequence and structure

e Pairwise alignment

e Profile alignment

e Multiple sequence alignment of target and template sequence relatives
o Profile-profile alignment

e Fold recognition alignment

e Visual examination of proposed alignments and manual adjustment

o Assessment of confidence in alignment by residue (some regions will be more conserved than
others)

Structure alignment of multiple templates, if available

e Align by structure (fssp, VAST, CE, etc.)
e Compare sequence alignments from structure to sequence alignments from multiple sequence

alignments (see above)

Experimental information

e Mutation data (site directed, random, naturally occurring)
e Functional data, e.g. DNA binding, ligands, metals, catalysis, etc.

o Oligomer data, e.g. analytical ultracentrifugation, native gel electrophoresis
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Since proteins act through their interactions with other molecules, it is
important to gather information on known or putative ligands or binding
partners of the target. Indeed, the target of the modeling may not be a
single protein but a protein complex. As the number of structures of multi-
protein complexes increases, there are more and more templates for this kind
of modeling. Many proteins act as homo-multimers and so it is important to
know whether the goal of modeling is a dimer or tetramer or other multimer
of the target. While this may not be known for the modeling target itself, it
may be known experimentally for homologs of the target through various ex-
periments, including analytical ultracentrifugation, native gel electrophoresis
and of course X-ray crystallography (see below in this section). Information
on protein—protein interactions of the target, DNA binding, and other ligands
such as ions and organic substrates or cofactors is also important and may be
included in the modeling.

With the large amount of sequence information available, it is almost always
possible to produce a multiple alignment of sequences related to the target
protein. The first step in modeling therefore is to use a database search
program such as PSI-BLAST [3] against a nonredundant protein sequence
database such as NCBI's nr database [13] or the curated UniProt database [7].
With some care, a list of relatives to the target sequence can be gathered and
aligned. PSI-BLAST provides reasonable multiple alignments, but it may be
desirable to take the sequences identified by the database search and realign
them with a multiple sequence alignment program such as ClustalW [211] and
Muscle [55]. PSI-BLAST tends to create multiple sequence alignments with
many gaps, because insertions relative to the query may be placed at slightly
different positions (see also Chapter 3).

It may be that a database search consisting of several rounds of PSI-BLAST
will provide one or more sequences of known 3-D structure. If this is not the
case then more sensitive methods based on fold recognition or hidden Markov
models (HMMs) [6, 8,23, 53,54, 93] of protein superfamilies may identify a
suitable template structure (see Chapter 11). Once a template structure is
identified, a sequence database search will provide a list of relatives of the
template, analogous to searches for relatives of the target. At this stage it is
useful to divide the sequences related to the target into orthologs of either
the target or the template (or both). The sequence variation within the set of
proteins that are orthologous to the target provides information as to what
parts of the sequence are most conserved and therefore likely to be most
important in the model. Similarly variation in the set of proteins that are
orthologous to the template provide a view of the template protein family
that can be used to identify features in common or distinct in the template
and target families. These features can be used to evaluate and adjust a joint
multiple alignment of both families.
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If there are multiple structures in the PDB that are homologous to the target
sequence, then it is necessary to evaluate them to determine which PDB entry
will provide the best template structure and whether it will be useful to use
more than one structure in the modeling process. In the case of a single
sequence that occurs in multiple PDB entries, it is usually a matter of selecting
the entry with the highest resolution or the most appropriate ligands (DNA,
enzyme inhibitors, metal ions). In other cases, there may be more than one
homolog related to the target sequence, and the task is to select the one more
closely related to the target or to combine information from more than one
template structure to build the model. To do this, a structure alignment of
the potential templates can be performed with one of a number of available
computer programs (Dali [82], CE [194], etc.). From alignments of the target
to the available templates, the location of insertions and deletions can be
observed, and often it will be clear that one template is better than others.
This may not be uniform, however, such that some regions of the target may
have no insertions or deletions with respect to one template, but other regions
are more easily aligned with the other template. In this case, a hybrid structure
may be constructed [207].

As noted above, it may be desirable to build a particular multimer of
the target sequence. It is therefore important to gather information on the
biological units for the available template structures. The biological unit is
defined as the likely oligomeric state of a protein in its relevant biological
context. By contrast, the asymmetric unit is the object for which there is
independent experimental information in the crystallographic experiment.
The asymmetric unit may be a monomer or dimer or higher multimer of the
protein or proteins in the crystal. Quite often the biological unit is present
within the crystal and may or may not coincide with the asymmetric unit. In
some cases it may be made of parts or all of more than one asymmetric unit.
In other cases, the asymmetric unit is composed of more than one biological
unit.

The possibilities are illustrated in Figure 3, where the asymmetric units from
three different crystal structures of hemoglobin are shown. Hemoglobin is
a tetramer consisting of two - and two B-chains. In the first structure, the
asymmetric unit consists of an entire tetramer and therefore coincides with the
biological unit. The second structure contains only an o—f3 dimer and therefore
the biological unit is constructed with the space group symmetry operators to
form a tetramer. In the third case, the biological unit consists of two tetramers
and therefore contains two copies of the biological unit.

The probable biological units are obtainable from both the PDB and the
European Bioinformatics Institute (EBI) from their Protein Quaternary Server
(PQS) [80]. Often these two sources do not agree on the biological unit
for a particular PDB entry and they should be interpreted as hypothetical
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Figure 3 Asymmetric units for hemoglobin biological unit, (b) the asymmetric unit is
from three different structures. The biological ~ smaller than a biological unit (in this case,
unit consists of four chains (two a- and two it is one half of a biological unit) and (c) the
B-chains). Three scenarios are shown: (a) asymmetric unit is larger than the biological
the asymmetric unit consists of exactly one unit (in this case, it is two biological units).

oligomers. By comparing the asymmetric units with those from the PDB
and the EBI, we found that for over 50% of structures, the asymmetric unit
does not correspond to the biological unit for PDB or PQS or both. The PDB
and PQS agree 80% of the time on the biological unit (see Section 4.3). It is
therefore important to choose a template that has the correct multimer status
in its biological unit and to use this biological unit in the modeling process,
rather than the asymmetric unit.

Finally, any other experimental data available on the target or template pro-
teins may be very helpful in producing and interpreting a structural model.
These can include inhibitor studies, DNA binding and sequence motifs, pro-
teolysis sites, metal binding, mutagenesis data, etc. A number of databases
are available on the web that summarize information on particular genes or
that collect information on mutations and polymorphisms linked to disease,
including: the Cancer Genome Anatomy Project [201], the Online Mendelian
Inheritance in Man (OMIM) [76] and the Human Gene Mutation Database
[102,200].

3 Methods
3.1 Modeling at Different Levels of Complexity
Once an alignment is obtained between the target and a protein of known

structure (as described in Section 2, and in Chapters 3 and 10), it is possible to
build a series of models of increasing sophistication.
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(i) Simple model: keep backbone and conserved side chains by renaming and
renumbering coordinates in the template structure with the new sequence
using the alignment of target and template; rebuild other side chains
using a side chain modeling program (e.g. SCWRL [22, 30, 47]); do not
model insertions or deletions (i.e. do not build new loops and do not close
up gaps).

(if) Stepwise model: borrow core backbone from template structure, minus
coil regions with insertions or deletions in the sequence alignment; re-
build core side chains; rebuild coil regions with loop prediction method
in conjunction with side-chain prediction method. Core backbone and
side chains may or may not be held fixed during loop prediction. The
entire model may be refined using energy minimization, Monte Carlo or
molecular dynamics techniques.

(iii) Jigsaw model: borrow backbone from a common core of several struc-
turally aligned templates, using loop regions from different templates
according to the alignments, usually keeping those loops for which there
is no gap in the alignment with the target sequence. Some loops may
need to be modeled.

(iv) Global model: build entire protein from spatial restraints drawn from
known structure(s) and sequence alignment (e.g. MODELLER [174,180]).

It is not always the case that more sophisticated models are better than sim-
pler, less-complete ones. If elements of secondary structures are allowed to
move away from their positions in the template and large changes are made
to accommodate insertions and deletions, it may be the case that the model
is further away from the target structure (if it were known) than the template
structure was to begin with. This is the “added value” problem discussed by
John Moult at the Critical Assessment of Protein Structure Prediction (CASP)
meetings [138,140,141]. We would like methods that move the template struc-
ture closer to the target structure, such that they “add value” to a simple model
or unrefined stepwise model based on an unaltered template structure, with
side-chains replaced. Extensive energy minimization or molecular dynamics
simulations often bring a model further away from the correct structure than
toward it [59,98].

The simple model is sometimes justified when there are no insertions and
deletions between the template and target or when these sequence length
changes are far from the active site or binding site of the protein to be modeled.
This often occurs in orthologous enzymes that are under strong selective
pressure to maintain the geometry of the active site. Even in nonorthologous
enzymes, sometimes we are most interested in an accurate prediction of the
active-site geometry and not in regions of the protein distant from the active
site.
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A stepwise model is probably the most common method used in homology
modeling, since it is conceptually simpler than the more complex models and
since each piece can be constructed and examined in turn. Some programs
therefore proceed by taking the sequence—structure alignment, removing all
regions where there are insertions and deletions, and reconstructing loops and
side-chains against the fixed template of the remaining atoms. Some methods
may also allow all parts of the template structure to adjust to the changes in
sequence and insertions and deletions. This usually takes the form of a Monte
Carlo or molecular dynamics simulation [118]. A global model, as described
above, rebuilds a structure according to constraints derived from the known
template structure or structures. This is in contrast to stepwise models that
proceed essentially by replacing parts of the template structure and perhaps
perturbing the structure.

Many computer programs for homology modeling are developed to solve
a single problem, such as loop or side-chain building, and may not be set
up to allow all atoms of the protein to adjust or to model many components
simultaneously. In many cases these methods have been tested by using
simplified modeling situations. Such examples include experiments with
removing and rebuilding loops onto single protein structures, and stripping
and rebuilding all side chains. In the next sections we review some of the
work in these two areas.

3.2 Side-chain Modeling

3.2.1 Input Information

Side-chain modeling is a crucial step in predicting protein structure by homol-
ogy, since side-chain identities and conformations determine the specificity
differences in enzyme active sites and protein binding sites. The problem has
been described as “solved” [117], although new methods [120, 133,157,193,
234] or improvements on older ones [30] continue to be published. Some side-
chain prediction methods stand on their own and are meant to be used with
a fixed backbone conformation and sequence to be modeled given as input.
Other methods have been developed in the context of general homology
modeling methods, including the prediction of insertion-deletion regions.
Even when using general modeling procedures, such as MODELLER, it may
be worthwhile subsequently to apply a side-chain modeling step with other
programs optimized for this purpose [220]. This is especially the case when
side-chain conformations may be of great importance to interpretation of
the model. It is also often the case that insertion-deletion regions are far
away from the site of interest and loop modeling may be dispensed with.
Indeed, significant alterations of the backbone of the template, if they are
not closer to the target to be modeled (if it were known) than the template,
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may in fact result in poorer side-chain modeling than if no loop modeling
were performed. As described above, the choice of template may depend not
only on sequence identity but also on the absence of insertions and deletions
near the site of interest. If this is successful, side-chain modeling rises in
importance in relation to loop prediction.

Side-chain prediction methods described in detail in the literature have a
long history although only a small number of programs are currently publicly
available (see Table 2). Nearly all assume a fixed backbone, which may
be from a homologous protein of the structure to be modeled, or may be
the actual X-ray backbone coordinates of the protein to be modeled. Many
methods have in fact only been tested by replacing side-chains onto back-
bones taken from the actual 3-D coordinates of the proteins being modeled
(“self-backbone predictions”). Nevertheless, these methods can be used for
homology modeling by first substituting the target sequence onto the template
backbone and then modeling the side chains. When a protein is modeled
from a known structure, information on the conformation of some side chains
may be taken from the template [22,30,204]. This is most frequently the case
when the template and target residue are identical, in which case the template
residue’s Cartesian coordinates may be used. These may be kept fixed as the
other side chains are placed and optimized or they may be used only as a
starting conformation and optimized with all other side chains. Only a small
number of methods use information about nonidentical side chains borrowed
from the template. For instance, Phe < Tyr substitutions only require the
building or removal of a hydroxyl group while Asn < Asp substitutions
require changing one of d-atoms from NH, to O or vice versa. Summers
and Karplus [203,204] used a more detailed substitution scheme, by which
for instance the x; angle of very different side-chain types (e.g. Lys < Phe)
might be used in building side chains. In the long run, this is probably not
advantageous, since the conformational preferences of nonsimilar side-chain
types may be quite different from each other [50].

Table 2 Publicly available side-chain prediction programs

Program Availability ~ Website

SMD download http:/ /condor.urbb jussieu.fr/Smd.php

Confmat, Decorate  web http:/ /lorentz.immstr.pasteur.fr/website/projects
CARA/GeneMine  download http:/ /www.bioinformatics.ucla.edu/genemine

RAMP download http:/ /www.ram.org/computing /ramp

SCAP download http:/ /honiglab.cpmc.columbia.edu/programs/sidechain
SCWRL download http:/ /dunbrack.fccc.edu/scwrl

Maxsprout/ Torso web http:/ /www.ebi.ac.uk/maxsprout

SCATD download http:/ /www.bioinformatics.uwaterloo.ca/%7Ej3xu

PLOP download http:/ /francisco.compbio.ucsf.edu/~jacobson/plop_manual/

plop_overview
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3.2.2 Rotamers and Rotamer Libraries

Nearly all side-chain prediction methods depend on the concept of side-chain
rotamers (reviewed in Ref. [49]). From conformational analysis of organic
molecules, it was predicted long ago [182,183] that protein side chains should
attain a limited number of conformations because of steric and dihedral strain
within each side chain, and between the side chain and the backbone. Di-
hedral strain occurs because of Pauli exclusion between bonding molecular
orbitals in eclipsed positions [94]. For sp®>-sp® hybridized bonds, the energy
minima for the dihedral are at the staggered positions that minimize dihedral
strain at approximately 60°, 180°, and —60°. For sp>~sp? bonds, the minima are
usually narrowly distributed around +90° or —90° for aromatics and widely
distributed around 0° or 180° for carboxylates and amides (e.g. Asn/Asp %,
and Glu/GIn x3).

As crystal structures of proteins have been solved in increasing numbers,
a variety of rotamer libraries have been compiled with increasing amounts
of detail and greater statistical soundness, i.e. with more structures at higher
resolution [12,17,50-52,88,125,132,161,187,212]. The earliest rotamer libraries
were based on a small number of structures [12,17,88,161]. Even the widely
used Ponder and Richards library was based on only 19 structures, including
only 16 methionines [161]. The most recent libraries are based on over 850
structures with resolution of 1.7 A or better and mutual sequence identity less
than 50% between any two chains used.

Most rotamer libraries are backbone-conformation-independent. In these li-
braries, the dihedral angles for side chains are averaged over all side chains of
a given type and rotamer class, regardless of the local backbone conformation
or secondary structure. The most recent of these is by Lovell and coworkers
[125], who derived a more accurate backbone-independent rotamer library
by eliminating side chains of low stereochemical quality, including those
with high B-factors, steric conflicts in the presence of predicted hydrogen
atom locations, and other factors. The statistical analysis does not rely on
a parametric distribution function such as the normal model, and hence can
model factors like skew in an unbiased way.

Several libraries have been proposed that are dependent on the conforma-
tion of the local backbone [50-52,132,187]. McGregor and coworkers [132] and
Schrauber and coworkers [187] compiled rotamer probabilities and dihedral
angle averages in different secondary structures We have used Bayesian statis-
tical methods to compile a backbone-dependent rotamer library with rotamer
probabilities and average angles and standard deviations at all values of the
backbone dihedral angles ¢ and y in 10° increments [49-52]. The current
version of this library is based on 850 chains with resolution better than 1.7 A
and less than 50% mutual sequence identity.
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Finally, there is an alternative form of a rotamer library that includes large
numbers of conformations of each side-chain type in the form of Cartesian
coordinates. These libraries therefore include variation in bond lengths and
bond angles, as well as dihedral angles. They are generally used for fine
sampling of side-chain positions in the context of side-chain prediction. For
instance, Xiang and Honig [234] produced a library consisting of 7560 con-
formations for use in their side-chain prediction method from a set of 297
high-resolution structures. The variation in bond angles and dihedrals away
from average values is particularly useful for larger side chains for which
a small change in an angle near the base of the side chain may cause large
motions of atoms at the far end of the side chain. Other groups have also used
large rotamer libraries to introduce flexibility about mean dihedral angles of
rotamers as well as variation in bond lengths and bond angles [157,193].

3.2.3 Side-chain Prediction Methods

Side-chain prediction methods can be classified in terms of how they treat
side-chain dihedral angles (rotamer library, grid or continuous dihedral angle
distribution), bond lengths and bond angles (fixed, variable, sampled from
Cartesian conformers), potential energy function used to evaluate proposed
conformations, and search strategy.

The potential energy functions in side-chain prediction methods have var-
ied tremendously from simple steric exclusion terms to full molecular me-
chanics potentials. In most cases, the potential energy function is a standard
Lennard-Jones potential:

b= ()~ (9)°] »

In this equation, r is the distance between two nonbonded atoms, and ¢ and
are parameters that determine the shape of the potential. This potential has a
minimum at the distance r = 21/66 and a well depth of e. Different values of
and e may be chosen for different pairs of atom types. Some potential energy
functions for side chains may also include a hydrogen bond term. Depending
on the potential parameters, these potentials may not accurately model the
relative energies of rotamers for each side-chain type that are determined from
local interactions within each side chain and between the side chain and the
local backbone. For instance, in molecular mechanics potentials, interactions
between atoms connected by three covalent bonds (atoms i and i + 3 in a chain)
are not usually treated by van der Waals terms, but rather in torsion terms of
the form [127]:

E(t) = ZKm cos(mt+ ay) (2)
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where the sum over m may include 1-, 2-, 3-, 4- and 6-fold cosine terms. The
Ky, and ay, are constants specific for each dihedral angle and each term in the
sum. These torsion terms are included in some side-chain prediction methods,
but ignored in others [96].

Electrostatic interactions in the form of a Coulomb potential have been
included in methods that rely on full molecular mechanics potentials, usually
with a distance-dependent dielectric, ¢(r) = r:

E— qi4; 3)

e(r)r

Solvent interactions are also usually ignored, since these can be difficult or
expensive to model properly (for exceptions, see [120, 185,228]).

A number of side-chain methods use an energy term based on the proba-
bility of rotamers as a function of backbone conformation. These probabilities
are given in the backbone-dependent rotamer library, and the energy function
is usually of the form:

= Kin [ _PiOWR) )
Fi=—Kin (Pmax(q)r V. R) @

where the energy of rotamer i is expressed as a function of the probability of
this rotamer given the backbone dihedrals ¢ and y and the residue type R, and
the probability of the most common rotamer for the same backbone dihedrals
and residue type. The constant K is empirical and can be optimized given the
other terms in the energy function.

Side-chain conformation prediction incurs the risk of combinatorial explo-
sion, since there are on the order of n%t possible conformations, where 7, is
the average number of rotamers per side chain and N is the number of side
chains. However, in fact, the space of conformations is much smaller than that,
since side chains can only interact with a small number of neighbors, and in
most cases clusters of interacting side chains can be isolated and each cluster
can be solved separately [22,212]. Also, many rotamers have prohibitively
large interactions with the backbone and are at the outset unlikely to be part
of the final predicted conformation. These can be eliminated from the search
early on.

Many standard search methods have been used in side-chain conformation
prediction, including Monte Carlo simulation [83,109,116,120,137,167], sim-
ulated annealing [86], self-consistent mean field calculations [96,133,134], the
dead-end elimination (DEE) method [40-42,70,107,123,159], neural networks
[99] and graph theory [30,111,236].

Self-consistent mean field calculations represent each side chain as a set of
conformations, each with its own probability. Each rotamer of each side chain
has a certain probability, p(r;). The total energy is a weighted sum of the
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interactions with the backbone and interactions of side chains with each other:

N 7ot (i) N-1mot(i) N #rot(f)
Eot =), ), p(ri)Ep(ri) + ) p(ri)p(rj)Esc(ri,rj)  (5)
o1 =1 s s N R |

In this equation, p(r;) is the density or probability of rotamer r; of residue
i, Epy(r;) is the energy of interaction of this rotamer with the backbone, and
Esc(ri,r]-) is the interaction energy (van der Waals, electrostatic) of rotamer r;
of residue 7 with rotamer r; of residue j. Some initial probabilities are chosen
for the ps in Eq. (5) and the energies calculated. New probabilities p/(r;) can
then be calculated with a Boltzmann distribution based on the energies of each
side chain and the probabilities of the previous step:

N ”rot(j)
E(ri) = Ew(ri)+ Y, Y. p(rj)Esc(ri,rj)
=LA ri=1

exp(—E(r;)/kT)
Y exp(—E(r;) /KT)

p'(ri) =

Alternating steps of new energies and new probabilities can be calculated
from the expressions in Eq. (6) until the changes in probabilities and energies
in each step become smaller than some tolerance.

The DEE algorithm is a method for pruning the number of rotamers used in
a combinatorial search by removing rotamers that cannot be part of the global
minimum energy conformation [41,42,70,107,108,123]. This method can be
used for any search problem that can be expressed as a sum of single-residue
terms and pairwise interactions. Goldstein’s improvement on the original
DEE can be expressed as follows [70]. If the total energy for all side chains
is expressed as the sum of singlet and pairwise energies:

N N-1 N
E=Y Ew(ri)+ Y Y Esc(rir)) 7)
i=1 i=1 j>i

then a rotamer r; can be eliminated from the search if there is another rotamer
s; for the same side chain that satisfied the following equation:

N
Epp(ri) — Epp(si) + ) min { Ese(ri, 7j) — Esc(si, rj)} >0 8)
=it T

In words, rotamer 7; of residue i can be eliminated from the search if another
rotamer of residue i, s;, always has a lower interaction energy with all other
side chains regardless of which rotamer is chosen for the other side chains.
More powerful versions have been developed that eliminate certain pairs of
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rotamers from the search [42,70,123]. DEE-based methods have also proved
very useful in protein design, where there is variation of residue type as well
as conformation at each position of the protein [37,71,218].

The current SCWRL algorithm [30] uses graph theory to solve the combi-
natorial problem. In this method, each side chain in the protein is considered
a node in an undirected graph. An edge exists between two nodes i and j if
at least one rotamer of residue i and one rotamer of residue j interact with
each other, i.e. have a nonzero interaction energy. This produces a number of
separate graphs that are not connected to each other. Each of these graphs
can then be solved for the minimum energy conformation of the residues
in the graph. To accomplish this, each separate graph is broken up into its
biconnected components, as shown in Figure 4(a). Biconnected components
are cycles or nested cycles or bridges consisting of two nodes connected by
an edge. Two biconnected components share a node called an articulation
point, which when removed from the graph breaks the graph into two (or
more) connected subgraphs. The global minimum of the energy can be found
by beginning on the outside of the graph with biconnected components that
have only one articulation point. For each rotamer of the articulation point,
the minimum energy of the other rotamers is found and stored with the
rotamer of the articulation point. Then the biconnected graph is “collapsed”
onto the articulation point residue. This residue now contains information on
all the residues in the biconnected component. The procedure continues to
collapse biconnected components, until a single component is left, as shown
in Figure 4.

Recently, two papers [111,236] have appeared that extend the graph theory
algorithm further so that the smallest groups that need to be searched are
much smaller than biconnected components. In this method, some nodes can
be removed from the graph by collapsing a node or nodes onto an edge. This
is shown in Figure 4(b), in which a single node that has two neighbors in the
graph is collapsed onto an edge between the two neighbors. The new energy
of each rotamer pair for residues i and j is now:

}r)lg‘i/;'](ri' 7’]) = Eggcilr(ri' 7’]) + n};n {Eself(rk) + Epair(rir rk) + Epair(rjr rk)} (9)

The size of the smallest group that must be solved combinatorially is called
the tree width and is related to the size of the largest group of side chains that
are all mutually connected to each other.

In most methods, the search is over a well-defined set of rotamers for
each residue. As described above, these represent local minima on the side-
chain conformational potential energy map. In several methods, however,
nonrotamer positions are sampled. Summers and Karplus used CHARMM to
calculate potential energy maps for side chains based on 10° grids [203, 204].
Dunbrack and Karplus used CHARMM to minimize the energy of rotamers
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Figure 4 (a) Graph algorithm used biconnected components. Each biconnected
in SCWRLS3.0, solving a cluster using component is solved as shown in the right
biconnected components. The minimum margin and the collapsed component is

energy configuration of the cluster shown in shown as superresidues in curly brackets.
Figure 1 is identified by stepwise solution of (b) Collapsing a node onto an edge.

from canonical starting conformations (—60°, 180° and +60°) [51]. Vasquez also
used energy minimization [213], while Lee and Subbiah used a search over
10° increments in dihedral angles with a simple van der Waals term and a 3-
fold alkane potential on side-chain dihedrals [112]. Mendes and coworkers
[133,134] used a mean-field method to sample from Gaussian distributions
about the conformations in the rotamer library of Tuffery and coworkers [212].
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3.2.4 Available Programs for Side-chain Prediction

While many methods for side-chain prediction have been presented over the
years, only a small number of programs are publicly available at this time.
Information on obtaining these programs is given in Table 2. We define
“available” as either being downloadable (in source or executable form or
both) from the Internet or able to be run from a webserver. Some authors will
also provide their programs on request, but these programs do not generally
have documentation nor are they designed for general use. They are not listed
in Table 2.

3.3 Loop Modeling

3.3.1 Input Information

In stepwise construction methods, backbone segments that differ in length
between the template and target (according to the sequence alignment) need
to be rebuilt. In some situations, even when the sequence length of a coil
segment is maintained, it may be necessary to consider alternative conforma-
tions to accommodate larger side chains or residues with differing backbone
conformational requirements, Gly < non-Gly or Pro < non-Pro mutations.
Most such loop construction methods have been tested only on native struc-
tures from which the loop to be built has been removed. However, the reality
in homology modeling is more complicated, requiring several choices to be
made in building the complete structure. These include how much of the
template structure to remove before loop building, whether to model all side
chains of the core before rebuilding the loops, and whether to rebuild multiple
loops simultaneously or serially.

Deciding how much of the template structure to remove before loop build-
ing depends on examination of the sequence alignment and the template
structure [114,230]. Sequence alignments with insertions and deletions are
usually not unambiguous. Most sequence alignment methods ignorant of
structure will not juxtapose a gap in one sequence immediately adjacent to
a gap in another sequence, i.e. they will produce an alignment that looks like
this alignment:

AGVEPMENYKLS

SG———-LDDFKLT
rather than like this one:

AGVEPMEN—--YKLS

SGL————- LDDFKLT

However, the latter alignment is probably more realistic [1], indicating that a
five-amino-acid loop in the first sequence and structure is to be replaced with
a three-amino-acid loop in the second sequence. The customary practice is
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to remove the whole segment between two conserved secondary structures
units. Even with this practice, ambiguity remains, since the ends of secondary
structures, especially o-helices, are not well determined. If loop-building
methods were accurate, then removing more of the segment would be a
good idea. However, long loops (longer than seven amino acids) are difficult
to rebuild accurately and hence there is cause to preserve as much of the
starting structure as possible. Once the backbone has been borrowed from
the template in stepwise modeling, one has to decide the order of building the
core side chains, the backbone of loops to be built and their side chains. They
may be built sequentially or allowed to vary simultaneously. Side chains from
the core may guide the building of the loop, but at the same time may hinder
correct placement. It is certainly the case that in the final structure there must
be a reasonably low-energy conformation that can accommodate all loops and
side chains simultaneously. Different authors have made different choices,
and there has been little attempt to vary the procedure while keeping the
search algorithm and potential energy function used fixed.

3.3.2 Loop Conformational Analysis

Loop structure prediction is always based in one way or another on an un-
derstanding of loop conformations in experimentally determined structures.
Loop conformational analysis has been performed on a number of levels,
ranging from classification of loops into a number of distinct types to statis-
tical analysis of backbone dihedral angles. Loop classification schemes have
usually been restricted to loops of a particular size range: short loops of one
to four residues, medium loops of five to eight residues and long loops of nine
residues or longer.

Thornton and coworkers have classified B-turns, which are short loops
of two to five residues that connect two antiparallel B-sheet strands [195,
196,226,227]. These loops occur in a limited number of conformations that
depend on the sequence of the loop, especially on the presence of glycine
and proline residues at specific positions. The backbone conformation can
be characterized by the conformations of each amino acid in terms of regions
of the Ramachandran map occupied (usually defined as o, Bp, Bg, Tr, 0L
and 7v;) [227]. Usually one or more positions in the loops require an oy
conformation and therefore a glycine, asparagine or aspartic acid residue. One
useful aspect of this analysis is that if a residue varies at certain positions or
there are short insertions at certain positions, the effect on the loop can be
predicted [196] since the number of possibilities for each length class is small.
The programs BTPRED [192] and BHAIRPRED [103] are available (see Table 3)
to predict the locations of specific types of B-turns from protein sequences and
secondary structure predictions. Single-amino-acid changes tend to maintain
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the loop conformations, except when Pro residues substitute for residues with
¢ > 0°, while insertions change the class of the loop.

Table 3 Publicly available loop conformation prediction programs

Program Availability Website

Rapper web, download  http://raven.bioc.cam.ac.uk

ModLoop web http:/ /alto.compbio.ucsf.edu/modloop//modloop

Loopy download http:/ /honiglab.cpmc.columbia.edu/programs/loop

PLOP download http:/ /francisco.compbio.ucsf.edu/~jacobson/plop_manual/
plop_overview

MODELLER  download http:/ /salilab.org/modeller

In recent years with a larger number of structures available, medium-length
loops have also been classified [38,44,56,69,104,115,135,147,149,150,229] by
their patterns of backbone conformation residue by residue (ag, Bp, etc.). A
number of regularly occurring classes have been found, depending on length,
type of secondary structure being connected and sequence. These classes
cover many but by no means all of the loops seen in non-f3 turn contexts.

Longer loops (with more than eight amino acids) have been investigated
by Martin and coworkers [131] and Ring and coworkers [165]. Martin and
coworkers found that long loops fall into two classes: those that connect spa-
tially adjacent secondary structures and those that connect secondary struc-
tures separated by some distance. Ring and coworkers provided a useful
classification of longer loops as either strap (long extended loops), (2 loops
(similar to those described by Leszczynski [115] and Pal and coworkers [150]),
which resemble the Greek letter, and { loops, which are nonplanar and have
a zigzag appearance. The different loop types were found to have different
distributions of virtual Co—Cy—Cq—Cg dihedrals to accommodate their shapes.

A number of groups have updated the Ramachandran propensities of the
20 amino acids. Swindells and coworkers [209] have calculated the intrinsic
¢,y propensities of the 20 amino acids from the coil regions of 85 protein struc-
tures. The distribution for coil regions is quite different than for the regular
secondary structure regions, with a large increase in Bp and o; conformations,
and much more diverse conformations in the B and o regions. Their results
also indicate that the 18 non-Gly,Pro amino acid type are in fact quite different
from each other in terms of their Ramachandran distributions, despite the
fact that they are often treated as identically distributed in prediction meth-
ods [25,57]. Their analysis was divided into the main broad regions of the
Ramachandran map, ignoring the o region. The results are intriguing, in that
the probability distributions are distinct enough even when calculated from a
relatively small protein dataset. More recently Lovell and coworkers [124] and
Anderson and coworkers [4] have produced new Ramachandran maps based
on stricter criteria for inclusion of amino acids based on resolution, R-factors
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and B-factors, as well as data smoothing techniques that remove outliers and
unpopulated parts of the Ramachandran map. Their results indicate that a
stricter adherence to “allowed” regions is called for, since nearly all residues
in disallowed regions are based on poor electron density.

3.3.3 Loop Prediction Methods

Loop prediction methods can be analyzed for a number of important factors in
determining their usefulness: (i) method of backbone construction, (ii) what
range of lengths are possible, (iii) how widely is the conformational space
searched, (iv) how are side chains added, (v) how are the conformations
scored (i.e., the potential energy function) and (vi) how much has the method
been tested (length, number, self/nonself).

The most common approach to loop modeling involves using “spare parts”
from other (unrelated) protein structures [10, 32, 60, 61, 63,72, 81, 91,96, 114,
135,165,168, 172, 205,207,217, 230, 231]. These database methods begin by
measuring the orientation and separation of the backbone segments flanking
the region to be modeled, and then search the PDB for segments of the same
length that span a region of similar size and orientation. This work was
pioneered by Jones and Thirup [91]. They defined a procedure in which Cq—
Cq distances were measured among six residues, three on either side of a
backbone segment to be constructed. These 15 Cy—Cy, distances were used
to search structures in the PDB for segments with similar Cy—Cgq distances
and the appropriate number of intervening residues. Other authors have
used the same method for locating potential database candidates for the loop
to be constructed [60, 96, 205,217]. The fragment selection method used in
Rosetta ab initio modeling [197] is based at least in part on the database
approach to loop modeling, and is used in Rosetta for loop construction
in homology modeling [167]. In recent years, as the size of the PDB has
increased, database methods have continued to attract attention. With a larger
database, recurring structural motifs have been classified for loop structures
[44,56,104,113,135,147,172], including their sequence dependence.

Although many methods have been published, they have usually only
been tested on a small number of loops, and then usually in the context
of rebuilding loops onto their own backbones, rather than in the process of
homology modeling. A recent exception is that of Fernandez-Fuentes and
coworkers [61] who tested the ArchDB database [56] of loops as a predictive
tool. They used a “jackknife” test that removed all loops from the same
superfamily for each loop in a set of over 10 000 used to construct ArchDB.

The main alternative to database methods is ab initio construction of loops
by random or exhaustive search mechanisms. These methods are quite var-
ied in their generation and subsequent modification of loop structures to
fit the environment of the fitted segment. The initial conformation may be
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random, starting from the N- or C-terminal anchor, so that the other end of
the loop does not connect to the other anchor (the C- or N-terminal anchor,
respectively). Such loops can then be closed using energy minimization that
places some energetic constraints on a closed loop, or using loop closure
methods, such as those based on inverse kinematics in robotics [19, 28, 35].
Other methods have built chains by sampling Ramachandran conformations
randomly, keeping partial segments as long as they can complete the loop
with the remaining residues to be built [64,191,198].

An alternative approach to the loop generation problem is to use a geomet-
rically distorted loop that bridges the two anchors exactly and then to relax
the structure into an undistorted protein-like structure. MODELLER starts
loop modeling with a linear arrangement of the atoms in the loop, which is
then relaxed into a protein-like conformation using energy minimization [65].
Zheng and coworkers used a scaling-relaxation method in which an initially
generated or database loop is scaled in size until it fits the anchors [244-246].
This results in very short bond distances and unphysical connections to the
anchors. From there, energy minimization is performed on the loop, slowly
relaxing the scaling constant, until the loop is scaled back to full size.

One important aspect in the development of a prediction method based
on random (or exhaustive) construction of backbone conformations is the
free energy function used to discriminate among those conformations that
successfully bridge the anchors. Fogolari and Tosatto have found that a
free energy function including a molecular mechanics potential energy and a
Poisson—Boltzmann solvent-accessible surface area solvation term was able to
identify decoys from a large set that were close to the native structure [66]. Ja-
cobson and coworkers recently used the OPLS (optimized potential for liquid
simulations) molecular mechanics force field, with improved torsional energy
parameters optimized to reproduce quantum-mechanical data and side-chain
prediction [87], in combination with a surface-generalized Born/nonpolar
(SGB/NP) hydration free energy model [68]. Their search method generated
one residue at a time from a 5° resolution backbone model with steric and side-
chain checks, from both ends of the loop, followed by clustering and energy
minimizations of cluster representatives. Their method was tested on a large
set of 833 loops with excellent results for loops up to 12 residues in length.

3.3.4 Available Programs

Very few loop modeling programs per se are publicly available, although loop
modeling is integral to more complete modeling programs. A list of available
loop modeling programs is given in Table 3. Some programs that do complete
modeling but can be used for loop modeling without further refinement are
listed (e.g. MODELLER).
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3.4 Methods for Complete Modeling

Homology modeling is a complex process. Automated protocols that begin
with a sequence and produce a complete model are few, and the resulting
models should be examined with great care (as of course should all models).
However, these methods usually allow for (and indeed recommend) some
manual intervention in the choice of template structure or structures and
in the sequence alignment. In these steps, manual intervention is likely to
have important consequences. Later stages of modeling (actual building of
the structure) are more easily automated and there are not usually obvious
manual adjustments to make.

There are several publicly available programs available for homology mod-
eling that are intended to make complete models from input sequences. These
include MODELLER [174, 175,180, 181], RAMP [176-178] and MolIDE [29].
There are also several webservers that provide homology modeling services,
including SWISS-MODEL [74, 153, 154], Esypred [105] and 3D-JIGSAW [11].
Program availability is given in Table 4. Some of these programs provide only
BLAST /PSI-BLAST searching followed by model-building with MODELLER
(e.g. EsyPRED). We describe some of these programs.

Table 4 Publicly available comparative modeling programs

Program Availability Website

3d-JIGSAW web http://www.bmm.icnet.uk/servers/3djigsaw
CPHmodels web http:/ /www.cbs.dtu.dk/services/ CPHmodels
EsyPred web http:/ /www.fundp.ac.be/urbm /bioinfo/esypred
FAMS E-mail server  http://www.pharm kitasato-u.ac.jp/fams

Geno3D web http://geno3d-pbil.ibcp.fr

MODELLER download http:/ /salilab.org/modeller

ModWeb web http://salilab.org/modweb

Modzinger web http:/ /peyo.ulb.ac.be/mz/index

nest download http:/ /honiglab.cpmc.columbia.edu/programs/nest
parmodel web http:/ /laboheme.df.ibilce.unesp.br/cluster/parmodel_mpi
Robetta web http:/ /robetta.bakerlab.org

SDSC web http://cl.sdsc.edu/hm

SWISS-MODEL  web http:/ /swissmodel.expasy.org/ /SWISS-MODEL

3.4.1 MODELLER

MODELLER takes as input a protein sequence and a sequence alignment to
the sequence(s) of known structure(s), and produces a comparative model.
The program uses the input structure(s) to construct constraints on atomic dis-
tances, dihedral angles, etc., that when combined with statistical distributions
derived from many homologous structure pairs in the PDB form a conditional
probability distribution function for the degrees of freedom of the protein.
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For instance, a probability function for the backbone dihedrals of a particular
residue to be built in the model can be derived by combining information in
the known structure (given the alignment) and information about the amino
acid type’s Ramachandran distribution in the PDB. The number of constraints
is very large; for a protein of 100 residues there may be as many as 20 000
constraints. The constraints are combined with the CHARMM force field to
form a function to be optimized. This function is optimized using conjugate
gradient minimization and molecular dynamics with simulated annealing.

3.4.2 MolIDE: A Graphical User Interface for Modeling

MolIDE (Molecular Interactive Design Environment) is an open-source, exten-
sible graphical user interface for homology modeling [29]. MolIDE provides a
graphical interface for running sequence database searches with PSI-BLAST,
searches of the PDB, secondary structure prediction, manual alignment edit-
ing, and running loop and side-chain prediction programs. One of MolIDE’s
main benefits is allowing a user to edit a sequence-structure alignment and
to view the positions of insertions and deletions within the template structure
in real time. MolIDE also allows manual choice of anchor residues for loop
modeling with the assistance of a graphical view of the template protein
structure. MolIDE runs on the Windows and Linux operating systems. The
use of MolIDE will be illustrated in the next section with an example of
comparative modeling of a protein of biological interest.

3.4.3 RAMP and PROTINFO

Samudrala and Moult described a method for “handling context sensitiv-
ity” of protein structure prediction, i.e. simultaneous loop and side-chain
modeling, using a graph theory method [178,179] and an all-atom distance-
dependent statistical potential energy function [176]. These methods are also
implemented in the PROTINFO webserver listed in Table 4.

3.4.4 SWISS-MODEL

SWISS-MODEL is intended to be a complete modeling procedure accessible
via a web server that accepts the sequence to be modeled and then delivers the
model by electronic mail [74,154]. In contrast to MODELLER, SWISS-MODEL
follows the standard protocol of homolog identification, sequence alignment,
determining the core backbone, and modeling loops and side chains. SWISS-
MODEL will search a sequence database of proteins in the PDB with BLAST,
and will attempt to build a model for any PDB hits with p-values less than
10~° and at least 30% sequence identity to the target. SWISS-MODEL allows
for user intervention by specifying the template(s) and alignments to be used.
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If more than one structure is found, the structures will be superimposed on
the template structure closest in sequence identity to the target.

SWISS-MODEL determines the core backbone from the alignment of the
target sequence to the template sequence(s) by averaging the structures ac-
cording to their local degree of sequence identity with the target sequence. The
program builds new segments of backbone for loop regions by a database scan
of the PDB using anchors of four Cq atoms on each end. This method is used
to build only the Cy atoms and the backbone is completed with a search of
pentapeptide segments in the PDB that fit the Cq, trace of the loop. Side chains
are now built for those residues without information in the template structure
by using the most common (backbone-independent) rotamer for that residue
type. If a side chain can not be placed without steric overlaps, another rotamer
is used. Some additional refinement is performed with energy minimization
with the GROMOS [75] program.

4 Results
4.1 Range of Targets

A very large number of homology models have been built over the years by
many authors. Recent targets have included proteins of significant interest in
biology and medicine 10- [2,9, 16,20,26,27,33,36,58,67,77,128,129, 145,162,
171,206,216,242]. Several databases of homology models are available on the
Internet, including ModBase [158], FAMSBASE [237] and the SWISS-MODEL
repository [100]. Their websites are given in Table 4.

4.2 Example: Protein Kinase STK11/LKB1

The protein kinase STK11 is frequently mutated in human cancers and mu-
tations in this gene are strongly associated with Peutz-Jeghers syndrome [79,
89]. Patients with Peutz—Jeghers syndrome often develop dark spots on the
lips and inside the mouth as well as near the eyes and nostrils. These patients
also develop polyps in the stomach and intestine, and are very susceptible to
cancers of the breast, colon, pancreas, stomach and ovary [188]. This disease
is inherited in an autosomal dominant manner, so that a mutation in a single
copy of the gene is enough to confer risk [110].

One important use of homology modeling is to understand how missense
mutations may lead to disease. In general, missense mutations that have
deleterious effects lead to amino changes that either affect stability or dy-
namics of a folded protein, or affect interactions of the protein product with
other molecules, including other proteins, DNA or ligands. While most of
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the mutations associated with the disease lead to a truncated protein, many
missense mutations have also been linked to Peutz-Jeghers syndrome [110].
It is therefore of interest to build a model of the STK11 kinase domain and
examine the location and likely effects of disease-associated mutations.

As described above, MolIDE [29] assists a user in modeling a protein by pro-
viding a graphical interface to the steps involved in basic homology modeling,
including sequence database searching, alignment editing, and loop and side-
chain modeling. We obtained the sequence of STK11 from the NCBI website in
FASTA format, as shown in the middle panel of Figure 5. Once this sequence is
input into MolIDE, the user runs PSI-BLAST from the Tools menu. PSI-BLAST
is set up to run several rounds of search against the nonredundant protein
database from NCBI. The version of PSI-BLAST distributed with MolIDE
has been modified to output a profile matrix with a unique name after each
iteration of the search so that each matrix can then be used to search the
PDB sequence database included with MolIDE (G. Wang and R.L. Dunbrack,
Jr., unpublished). These profiles are also used by the secondary structure
prediction program PSIPRED [90], included with MolIDE. The secondary
structure predictions are shown in the lower panel of Figure 5, where the
red and green colors indicate o-helices and B-sheet strands, respectively, and
the intensity of the color represents the confidence level of the prediction.
As the profile includes more and more sequences remotely related to the
query, the secondary structure prediction also changes. For some proteins,
the prediction gets better as the signal from the multiple alignment becomes
stronger, while for others the prediction may worsen if many sequences with
variations in secondary structure (longer loops, shorter or longer secondary
structure elements) get aligned or even misaligned to the profile.

As STK11 is a kinase, we have a large variety of structures in the PDB
that can be used as a template. It is important to make a good choice, since
the quality of the model will depend on the template or templates used.
Currently, MolIDE does not model from multiple templates, so we need to
select one structure. However, we could make a number of models based on
different templates and compare them. A list of hits from the PDB for STK11
is shown in the upper panel of Figure 5. This list was generated from a PSI-
BLAST search using the profile generated from the first round of PSI-BLAST
on the nonredundant database. Information about each template, including
PDB code, experiment type, resolution, E-value, sequence identity, length of
template, starting positions of alignment and length of alignment, is given.
Template choice is facilitated in this table by sorting based on any of the
categories by clicking on the column header. Three different sorts of the table
are shown in Figure 6, sorted by end query residue of the alignment (top),
resolution (middle) and percent gaps in the alignment (bottom).
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Figure 5 Screenshot of MolIDE for modeling  using PSIPRED after each of three rounds of

STK11. Top: hits from a search of the PSI-BLAST. Helix predictions are in red and
PDB for protein target sequence STK11. sheet strand predictions are in green, and
Middle: sequence of STK11. Bottom: the intensity of the color is proportional to the
secondary structure prediction for STK11 confidence levels produced by PSIPRED.

The usefulness of a template depends on many factors. It is not necessarily
the case that one should use the highest-sequence-identity hit or the best E-
value. The number and location of gaps in the alighment should also be
considered, as should the presence of desirable ligands and structure quality.
For STK11, the majority of template alignments end around residue 310,
which is the end of the kinase domain, but obviously it would be useful to
model the region C-terminal to the kinase domain (residues 310-433).

By double-clicking on the PDB code, MolIDE opens up a window with the
alignment as shown for that PDB entry. This window contains the alignment
at the bottom and a rotatable view of the backbone of the template in the
top part of the window (Figure 7). Conserved amino acids are indicated
between the query (top) and hit (bottom) sequences. Gaps in the alignment are
indicated by blue squares as are residues in the template that are missing in the
coordinates due to poor electron density. Positions in the template structure
where insertions need to be modeled, because the query sequence is longer in
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Figure 6 Choosing templates for modeling STK11. Screenshot of
MolIDE showing PDB hits sorted by end residue (top), resolution
(middle) and percent gaps in alignment (bottom).

that region, are marked with yellow spheres on the structure view. Deletions
from the structure are shown on the protein structure as red spheres.

Figure 7 shows the C-terminal end of the alignment for template 1RDQ
(chain E) [238]. It is fairly clear from this view that the extension of the
alignment beyond residue 316 of the query shows very little similarity in
sequence with the template and includes a very large insertion that would
need to be modeled. It is likely that this region is incorrectly aligned. This
often happens with PSI-BLAST type alignments, such that alignments extend
beyond conserved domains due to chance similarities, especially in regions
without significant regular secondary structure.

After examining a number of the other templates that extend well beyond
residue 310, it was clear that none of them gave a very good alignment for the
C-terminal portion of STK11. While a large number of the templates share
similar sequence identity to STK11 on the order of 21-27%, some of them
contain substantially fewer gaps in the alignment than others. Sorting by

327



328

10 Homology Modeling in Biology and Medicine

Figure 7 Template 1RDQ (chain E) as query (red = helix; green = sheet) and the
template for STK11. The end portion of experimental secondary structure of the hit is
the alignment is shown, indicating that the below the template sequence. In the structure
residues after STK11 residue 310 are poorly view, residues deleted from the structure
aligned with little sequence similarity and are indicated with red balls and points of

a large gap. Gaps in the alignment are insertion are marked by pairs of yellow balls.
marked with blue squares, and conserved The aligned portion of the template is in
residues are marked between the query green and the unaligned portions are in gray.
(top) and hit (bottom) sequences. The The last residue of the aligned portion is in
predicted secondary structure is above the spacefill representation (Tyr336).

percent gaps, we find a group of templates that have 2-3% of the alignment as
gaps for residues 40-310, as shown in the bottom panel of Figure 6. We chose
as template PDB entry IMQ4, a 1.9-A structure of aurora-A kinase [143], since
this structure was the highest resolution of these and contained ADP in the
active site of the kinase.

One of the benefits of MolIDE in user-assisted homology modeling is the
ability to edit the sequence with the assistance of a graphical view of the
protein with the locations of insertions and deletions. For instance, in Figure 8
the alignments before (left screenshot) and after (right screenshot) editing are
shown. In the left figure, the two-residue insertion (residues 123-124 with
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Figure 8 Manual editing of sequence right). Note that the positions of the yellow
alignments based on the structure view of balls marking the position of the insertion
template 1MQ4 for STK11. The alignment move as the alignment is edited. The anchor
before editing is shown at left and after positions for loop modeling set manually are

editing at right. The spacefilled residues mark indicated on the right (Tyr118 and Lys124 of
the loop being edited (Ala84 left and His82 STK11).

sequence QK) occurs inside a B-sheet strand. Ala84 in the middle of the
neighboring loop is shown in spacefill representation to mark the location
on the structure. After editing the alignment by “ctrl”-clicking and “shift”-
clicking to delete the gap and to create it in another location, the alignment
appears as it does in the right side of the figure (with the last residue of the
sheet strand, His82, in spacefill this time).

Once the sequence alignment is edited, e.g. by moving insertions and dele-
tions into the middle of loop regions as described above, loop and side-
chain modeling commands can be called from the menus. Our side-chain
modeling program SCWRL is integrated into MolIDE and Loopy is used for
loop modeling [235]. To model loops, the positions of left and right anchor
residues are set by pointing and “right”-clicking on the query sequence and
then calling Loopy from the Tools menu. The anchors for the loop consisting
of residues 118-123 are shown in the right screenshot in Figure 8.

After modeling each of the five insertions and adding the coordinates of
the ADP and magnesium ions, we can view the structure superposed on its
template as shown in Figure 9. MolIDE is not set up to model in the presence
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Figure 9 Model of STK11. The template associated with development of cancer are
backbone is in blue and the modeled loops shown in spacefill representation, including
for STK11 are in red. The ADP bound in the Tyr49 (magenta), Val66 (cyan), Leu160
active site is in stick figure and CPK coloring (orange), Asp194 (yellow), Glu199 (violet),
(carbon = gray; oxygen = red; nitrogen = blue;  Asp208 (red) and Phe231 (white). Gly135 is
phosphorus = orange). Several mutations marked on the backbone in green.

of the ligand, although this can be accomplished for side chains with SCWRL
outside of MolIDE. Most of the insertions are some distance away from the
active site and four of these are relatively close in space to each other, all on
the bottom face of the protein as oriented in Figure 9.

The positions of some missense mutations associated with cancer are
marked with spacefill on the structure and three of these mutations are located
in the modeled loops at the bottom of the protein. Another one is in the
modeled loop at the top. Three mutations are buried in the hydrophobic
core, of which two are in the N-terminal domain and one is in the C-terminal
domain (colored in cyan, magenta and orange, respectively). These mutations
are likely to disturb the hydrophobic cores of these regions, leading to
instability of the folded structure. One additional mutation, in yellow spheres,
is an Asp residue that binds the magnesium ions which stabilize the binding
of ATP to the kinase. Loss of this Asp is likely to result in loss of magnesium
and inability to bind ATP. STK11 binds a number of other proteins, and it is
possible that one of these proteins binds to the modified loops at the bottom
of the structure and that mutations in these loops leads to lack of binding of
important interactors of STK11. Mutations which affect binding of the STRAD
protein have been analyzed using a homology model of STK11 by Boudeau
and coworkers [21]. While STRAD is homologous to kinase domains, none
of the available dimeric kinase templates appears to have a binding interface
consistent with these mutations, indicating that perhaps STRAD does not bind
to STK11 in a manner similar to existing dimer interfaces of kinases.
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Figure 10 Venn diagram of similarities only approximations to percentages marked
among asymmetric units, RCSB biological in each overlapping or nonoverlapping region.
units and EBI (PQS) biological units. Each For instance, 36% of the 24 000 entries have
circle represents 24 000 entries available an asymmetric unit that is different from both

from both RCSN and PQS sites. Areas are RCSB and PQS.

4.3 The Importance of Protein Interactions

The STK11 example points out the importance of incorporating information
on protein interactions in homology modeling. As described above, the Re-
search Collaboratory for Structural Bioinformatics (RCSB) provides structures
of the asymmetric unit, rather than the biological unit for crystal structures.
RCSB also provides separate files that contain the proposed biological unit(s)
for each structure, which may be larger or smaller than the asymmetric unit.
To quantify this issue, we compared the asymmetric units and the biological
units as provided by both the RCSB and the EBI/macromolecular structure
database (MSD) [80]. For 23 418 structures available in PQS, Figure 10 shows
the similarity of these three sets of units. Figure 10 shows that 53% of asym-
metric units are different from either the RCSB or the PQS biological unit
or both. This indicates that the standard entry from the PDB is not the
biological unit at least half of the time and that the other two sources should
be consulted. In addition, RCSB and PQS do not agree on biological units
21% of the time. Unfortunately, there are no automated ways to model
homo-multimers, other than to model the sequence on each chain of a known
multimer structure. SWISS-MODEL does provide a way to combine models
made from different chains of a template biological unit file from PQS.

To illustrate the importance of these interactions, we investigated the large
set of mutations in Lac Repressor investigated by Miller and colleagues [130,
148,202], These authors presented functional data on 4042 mutations of the
Escherichia coil Lac repressor. The Lac repressor function was evaluated in
vivo by observing expression levels of B-galactosidase with and without al-
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losteric induction by isopropyl-B-D-galactoside (IPTG). Thus mutations that
reduce stability of the Lac repressor monomer, the affinity of monomers in the
tetramer, as well as those that affect binding to DNA will produce a visible
blue phenotype by the expression of -galactosidase. Mutations that affect
binding of IPTG will not be inducible and thus remain as white colonies, even
in the presence of IPTG. This is an ideal system for identifying parameters
that can be used to distinguish missense mutations that may cause functional
changes in proteins from those that probably would not.

We used two pieces of information to analyze these mutations: (i) the
location of residues in the structure of Lac tetramer bound to DNA and (ii) the
log-odds scores in a position-specific scoring matrix (PSSM) generated from a
multiple sequence alignment of repressor sequences. The PSSM includes two
pieces of information: whether a particular site is well conserved in proteins
related to Lac repressor and whether a proposed mutation is very different
in physical character to residues at that position in proteins related to Lac
repressor.

We defined four categories for location of an amino acid: face, buried, edge
or surface depending on the value of the relative surface accessibility of a
side-chain in the Lac repressor tetramer/DNA structure. Face residues were
those that had reduced accessibility of their side-chains in the full complex
compared to the Lac repressor monomer alone. Buried residues had less than
5% surface accessibility of their side-chains in the monomers. Edge residues
were those with 5-30% accessibility and surface were all others. Surface
residues are therefore those that are both on the surface and not in any binding
site. The results are shown in Figure 11.

The data indicate that dissimilarity to amino acids in the repressor family
as well as a location either buried in the hydrophobic core or in interfaces
is sufficient to distinguish levels of “risk”, i.e. a mutation with functional
consequences. For each category of PSSM log-odds except PSSM = —4, face
mutations are more likely to be deleterious than buried mutations and these
are much more likely to be deleterious than edge or surface mutations. In-
terface residues do not tolerate even conservative mutations, so that even for
PSSM values of 1 and 2, the proportion of deleterious mutations is 30% or
higher. Mutations on the surface but not in an interface are very tolerant to
mutations, with less than 1% of 743 mutations on the surface with PSSM of —2
or above having a negative phenotype.

The data in Figure 11 indicate the importance of modeling the biological
unit, since all of the mutations in the “face” region would be considered
surface or edge residues if the monomer was not present in a dimer complex
with DNA.



Figure 11 (a) Rates of deleterious mutations
based on PSSM score and physical location
for 4042 Lac repressor mutants. Face
residues are those with lower surface
accessibility in the Lac repressor dimer/DNA
complex than in the Lac repressor monomer
structure. Buried residues have less than

5% surface accessibility in the Lac repressor
monomer. Surface residues have greater

4 Results

than 30% accessibility in the Lac repressor
monomer or dimer/DNA complex, and
“edge” residues have between 5 and 30%
accessibility. PSSM is the log-odds score of
finding the mutation at each location of the
Lac repressor sequence based on a multiple
alignment of homologous sequences. (b)
Crystal structure of the Lac repressor dimer
bound to DNA.
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5 Strengths and Limitations

The strengths of homology modeling are based on the insights provided for
protein function, structure and evolution that would not be available in the
absence of an experimental structure. In many situations, a model built by
homology is sufficient for interpreting a great deal of experimental informa-
tion and will provide enough information for designing new experiments.
Homology modeling may also provide functional information beyond the
identification of homologous sequences to the target, i.e. a model may serve
to distinguish orthologous and paralogous relationships.

The limitations are due to decreasing accuracy as the evolutionary distance
between target and template increases. Alignment becomes more uncertain,
insertions and deletions more frequent, and even secondary structural units
may be of different lengths, numbers, and positions in very remote homologs.
Predicting the locations of secondary structure units that are not present in
the template structure is a difficult problem and there has been little attention
paid to this problem.

The limitations of homology modeling also arise when we have insufficient
information to build a model for an entire protein. For instance, we may be
able to model one or more domains of a multi-domain protein or a multisub-
unit complex, but it may not be possible to predict the relative organization
of the domains or subunits within the full protein. This remains a challenge
for further research. And we are of course limited by structures present in
the PDB, which are almost exclusively soluble proteins. Up to 30% of some
genomes are membrane proteins, which are at present difficult to model be-
cause of the small number of membrane proteins of known structure. Recent
structures [119,146] of the G-protein-coupled receptor (GPCR) rhodopsin at
higher resolution than previous structures [151] create new opportunities to
model many of these membrane proteins more accurately. A number of
GPCRs have been modeled on the bovine rhodopsin structures [33, 58, 136,
144,152,243]. In addition, recent structures of bacterial ATP-binding cassette
(ABC) transporters at various stages of the transport process [45,122,164,186]
also provide opportunities for modeling of a large number of human ABC
transporters implicated in drug resistance, such as P-glycoprotein and the
multidrug resistance protein (MRP) proteins [160,190].

Another problem is the quality of data in sequencing and structure deter-
mination. There are substantial errors in determining protein sequences from
genome sequences, either because of errors in the DNA sequence or in locat-
ing exons in eukaryotic genomic DNA [199]. Over 50% of X-ray structures
are solved at relatively low resolution, levels of greater than 2.0 A. Despite
progress in determining protein structures by NMR, these structures are of
lower resolution than high-quality X-ray structures. While high-throughput
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structure determination will be of great value to modeling by homology, one
concern is the quality of structure determination when the function of the
proteins being determined is unknown.

6 Validation

Validation for homology modeling is available in two distinct ways: (i) the
prediction rates for each method based on the prediction of known structures
given information from other structures and (ii) criteria used to judge each
model individually. Most structure prediction method papers have included
predictions of known structure, serving as test sets of their accuracy. However,
in many cases the number of test cases is inadequate (see Ref. [48]). It is also
very easy to select test structures that behave particularly well for a given
method and many methods do not stand up to scrutiny of large test sets
performed by other researchers. Test sets vary in number of test cases as
well as whether predictions of loops or side-chains are performed by building
replacements on the template structure scaffold, or in real homology modeling
situations where the loops/side-chains are built on nonself scaffolds. The
realistic case is more difficult to perform in a comprehensive way, since it
requires many sequence-structure alignments to provide the input informa-
tion on which models are to be built. Another problem is that each method is
judged using widely varying criteria, and so no head-to-head comparison is
possible from the published papers. The problem of biased test sets and subse-
quent development of larger benchmarks has a long history in the secondary
structure prediction field [170,239].

While sequence alignment methods have been extensively benchmarked
[184], programs that build coordinates from alignments, including the back-
bone, loops and side chains, have not been extensively compared to one
another in large-scale tests. Recently, however, Wallner and Elofsson [220]
compared several programs that build coordinates from templates given
template-target alignments, including MODELLER [174], SegMod/ENCAD
[116], SWISS-MODEL [189], 3D-JIGSAW [11], nest [234,235], Builder [96, 97]
and SCWRL (for side chains without modification of the template back-
bone) [30]. They found that three of the programs, MODELLER, nest and
SegMod/ENCAD, perform better than the others. In particular, SegMod is a
very old program and still performs as well as much more recent programs.
They also observed that none of the homology modeling programs builds side
chains as well as SCWRL.
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6.1 The CASP Meeting

Another forum for testing homology modeling methods has been the ongoing
series of CASP meetings organized by John Moult and colleagues [138-141,
214,215,240]. In the spring and summer before each meeting held in December
1994, 1996, 1998, 2000, 2002 and 2004, sequences of proteins whose structure
was under active experimental determination by NMR or X-ray crystallog-
raphy were distributed via the Internet. Anyone can submit structure pre-
dictions at various levels of detail (secondary structure predictions, sequence
alignments to structures and full 3-D coordinates) before specific expiration
dates for each target sequence. The models are evaluated via a number of
computer programs written for the purpose, and then assessed by experts
in each field, including comparative modeling, fold recognition and ab initio
structure prediction. The organizers then invite predictors whose predictions
are outstanding to present their methods and results at the meeting, and to
describe their work in a special issue of the journal Proteins, published in the
following year.

Ordinarily when protein structure prediction methods are developed, they
are tested on sets of protein structures where the answer is known. Unfortu-
nately, it is easy to select targets, even subconsciously, for which a particular
method under development may work well. Also, it is easy to optimize
parameters for a small test set that do not work as well for larger test sets.
While the number of prediction targets in CASP is limited to numbers on the
order of 10-20 per category, these numbers are still higher than many of the
test sets used in testing new methods under development.

6.2 Protein Health

A number of programs have been developed to ascertain the quality of experi-
mentally determined structures and these can be used to determine whether a
protein model obeys appropriate stereochemical rules. The two most popular
programs are ProCheck and WhatCheck [219]. Recently, the Richardson group
has developed MolProbity, which seeks to identify a number of features in
protein structures that are statistically unlikely, when compared to a manually
curated set of very high-resolution structures [39]. This is a webserver that
reports bad rotamer conformations, close contacts, flipped amide side-chains
and other potential errors in structures. Although this site is more geared
to analysis of new experimental structures, it can also be used on homology
models to identify steric clashes or poorly modeled regions of proteins.
These programs check bond lengths and angles, dihedral angles, planarity
of sp? groups, nonbonded atomic distances, disulfide bonds and other char-
acteristics of protein structures. One of the more useful checks is to see
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whether backbone geometries are in acceptable regions of the Ramachandran
map. Backbone conformations in the forbidden regions are very likely to be
incorrect. It should be noted once again that correct geometry is no guarantee
of correct structure prediction. In some cases, it may be better to tolerate a few
steric conflicts or bad dihedral angles, rather than to minimize the structure’s
energy. While the geometry may look better, the final structure may be
further away from the true structure (if it were known) than the unminimized
structure. Chapter 11 discusses the problem of health of protein models and
describes the respective Model Quality Assessment Programs (MQADPs).
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Protein Fold Recognition Based on Distant Homologs
Ingolf Sommer

1 Introduction

In the 1960s Anfinsen showed with a rather simple experiment that for
many proteins the sequence is the sole determinant for the three-dimensional
(3-D) structure [7,8]. A denaturating substance was added to the solution
of a protein, resulting in the loss of native protein structure and function.
After removal of the denaturing substance, proteins recovered the functional
activity (an enzymatic reaction in Anfinsen’s experiment). Thereby, it was
concluded that the protein managed to refold itself in the absence of any other
agents.

Later, it became evident that some proteins need other proteins to fold and
some proteins or parts of proteins remain unfolded (see Chapter 9). Still,
the Anfinsen principle has been a guiding force for much research that aims
at understanding mechanisms for determining the 3-D structure of proteins
given their sequence. Although great improvements of these methods have
been achieved, the protein structure prediction problem is still unsolved, in
general. The folding process that determines the structure is not known to
enough detail to serve as a basis for modeling. Instead, prediction methods
have to rely on heuristic inductive inferences.

One very successful approach to the prediction of protein structures today
models the protein structure based on another structurally resolved protein
as a structural template. We call this approach template-based modeling. The
protein whose structure is to be predicted is called the target. In addition to
the target sequence, the method requires the input of a database of resolved
protein structures, the so-called template structures. Rather than modeling
the protein structure de novo, we repeatedly ask the question whether the
protein structure of the target sequence is similar to a template structure. This
leaves us with a set of candidates for templates after which we can model the
structure of the target sequence.

This chapter deals with the question how likely it is that a target protein
sequence attains a structure similar to a given template structure. In principle
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one can compare the sequence itself to the sequences of the template structures
(sequence-sequence comparison, Section 3.1), additionally take evolutionary
information into account (profile methods, Sections 3.2 and 3.3) or thread
the sequence onto the given 3-D template structure taking physico-chemical
properties of the template structure into account (Section 4). The problem
of identifying suitable templates typically becomes harder the more distant
the target sequence is related to its most similar sequences in the template
database. More similar sequences are easier to identify when looking at
sequence information only; typically, they also have a more similar structure
within a chemically more similar environment.

Traditionally, protein structure prediction has been divided into homology
modeling (also called comparative modeling; see Chapter 10), fold recognition
(this chapter) and prediction of novel folds (Chapter 12) [97]. In homology
modeling, closely homologous templates are available affording very precise
models for the protein structure. In fold recognition, identifying a suitable
template becomes a challenge. Once a template is obtained, a prediction of the
3-D arrangement can be made, whereas a constructed full-atom model is not
reliable, in general. In contrast, in the new fold category no suitable template
is available and fragment assembly or de novo methods need to be applied.

The basic pipeline exercised is identical in the first two categories, in prin-
ciple. Thus, today homology modeling and fold recognition are merging.
The focus in homology modeling is more on obtaining detailed models with
high resolution. The focus of fold recognition is more on the identification of
suitable templates.

2 Overview of Template-based Modeling
2.1 Key Steps in Template-based Modeling

The input to template-based modeling is a target sequence and a data